
This chapter supplements and complements
Chapter 32, “Theory and Practice of Clinical
Trials,” by Marvin Zelen. In particular, under-
standing the basic principles espoused in Chap-
ter 32 is a prerequisite for the present chapter.
The two chapters support each other to a sub-
stantial degree, but are different in attitude. The
purpose of the present chapter is to describe sta-
tistical approaches to cancer research that allow
for building new designs and incorporating new
analyses. Some of the methods described here
have been introduced into research practice and
others are still being developed. The goals of the
innovations presented here are (1) to more effec-
tively use patient resources while treating
patients in clinical trials more effectively, and (2)
to identify better drugs and other therapies more
rapidly, moving drugs more quickly through the
development process. The methods exploit avail-
able evidence and place information gleaned
from an ongoing clinical trial into the context of
what is already known. These new methods tend
to be intuitively appealing. But like most innova-
tions, some are controversial. Although they
presage the future of clinical trial research, in
oncology and more generally, not every method
described here is destined to become standard in
medical research.

This chapter addresses two overall categories
of innovations. One represents a fine-tuning of
the traditional practice of statistics. The other is
based on an alternative view of the foundations
of statistics. Separating the two categories is not
possible. I will set each method in the context of
statistical approach, but I will present the various
methods in an integrated fashion. 

The “alternative view” of the foundations of
statistics is the Bayesian approach. Since not all
readers will be familiar with this approach, I will
describe it and relate it to the more traditional
frequentist approach. Readers who are familiar
with Bayesian ideas may wish to skip “Bayesian
Updating” below. An important distinction
between the two approaches is one of attitude.
The Bayesian approach is ideal for on-line learn-
ing (as data accrue), and the frequentist approach
is tied to a particular experimental design. But the
two approaches support each other. For example,
much of this chapter’s development of clinical
trial design employs the Bayesian approach as a
tool for finding designs that tend to treat patients
in the clinical trial more effectively and that iden-
tify better drugs more rapidly. But the design thus
derived is checked for its frequentist properties
(such as false-positive rate and power). Ensuring
that a design has pre-specified frequentist prop-

erties means that the design is frequentist and that
the Bayesian approach is a tool for finding good
frequentist designs.

Expanding the horizons of statistical designs
and analyses to the extent described here relies
on the availability of high-speed computers and
sophisticated computational methods. In the past
ten years there has been an explosion of Bayesian
computational procedures that can be used to
derive efficient designs. In addition, high-speed
computers can be used to simulate trials having
these designs to evaluate and compare their
properties, such as power and false positive rate.

BAYESIAN UPDATING

The purpose of this section is to describe the
Bayesian approach and to relate it to the more
traditional frequentist approach. Any such intro-
duction is necessarily cursory. Suggestions for
further reading include a comprehensive but ele-
mentary introduction to Bayesian ideas and
methods,1 a discussion of their role in medical
research,2 and a text describing more advanced
Bayesian methods.3

The defining characteristic of any statistical
approach is how it deals with uncertainty. In the
Bayesian approach, uncertainty is measured by
probability. Any event that is unknown has a
probability. The frequentist approach uses prob-
abilities as well, but in a more restricted fashion,
as will be seen in the next section. Examples of
probabilities in the Bayesian but not in the fre-
quentist approach: The probability that the drug
is effective, and the probability that Ms Smith
will respond to a particular chemotherapy.

The Bayesian paradigm is one of learning.
As information becomes available one updates
what one knows. The fundamental tool for
learning under uncertainty is Bayes’ rule.
Bayes’ rule relates inverse probabilities. A
familiar example is finding the positive predic-
tive value (PPV) for a diagnostic test: In view of
a positive test result, what is the probability that
the individual has the disease in question? The
inverse probability is that of a positive test given
the presence of the disease, which is called the
test’s sensitivity. PPV also depends on the test’s
specificity, which is the probability of a negative
test, given that the individual does not have the
disease. And it depends on the prevalence of dis-
ease in the population. The analog of PPV in the
application of Bayes’ rule to statistical inference
is the “posterior probability” that a hypothesis is
true given experimental results. The analog of
disease prevalence is the “prior probability” that
the hypothesis is true. 

For a simple numerical example, consider
two very specific hypotheses: the alternative
hypothesis H1 in which a population success rate
r is 0.75 and a null hypothesis H0 in which r is
0.5. Viewing “success” as a positive test result,
H1 is analogous to “has disease” and H0 is “does
not have disease.” The “sensitivity of the test” is
0.75—the rate of a success under H1—and the
“test’s specificity” is 0.5—the rate of failure
under H0. Suppose the prior probabilities of H1
and H0 are both 50%: P(H1) = P(H0) = 0.5. 

Convention is to write conditional probabili-
ties using a vertical bar. The event following the
bar is given—that is, taken as known with cer-
tainty—in calculating the probability of the
event that appears before the bar. For example,
the probability of success assuming hypothesis
H1 is written P(success|H1). 

After observing a success, according to
Bayes’ rule the updated (posterior) probability of
H1 is

P(H1|success) = P(success|H1)P(H1)/P(success)

where the denominator follows from the law
of total probability:

P(success) = P(success|H1)P(H1) + P(success|H0)P(H0). 

For further explanation, see chapter 5 of
Statistics: A Bayesian Perspective.1 The success
rate r is 0.75 under H1, and r = 0.5 under H0.
Therefore

P(success) = (0.75)(0.5) + (0.5)(0.5) = 5/8.

This is the average of the two rates of success,
0.75 and 0.5, calculated with respect to the cor-
responding prior probabilities. So the posterior
probability of H1 is

P(H1|success) = (0.75)(0.5)/(5/8) = 60%.

The new evidence boosts the probability of
H1 from 50% up to 60% (and since total proba-
bility must be 100%, it lowers the probability of
H0 from 50% down to 40%). 

Consider a second independent observation.
The prior probability for this observation is that
which is posterior to the previous observation. If
this new observation is also a success, then a sec-
ond use of Bayes’ rule gives P(H1|success, suc-
cess) = 9/13 = 69%. On the other hand, had the
second observation been a failure then P(H1|
success, failure) = 3/7 = 43%. This process can
go on indefinitely, updating either continually as
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observations are made or all at once. The current
probabilities of the various possible values of
success rate r can be found at any time. These
probabilities depend on the original prior proba-
bility and on the intervening data. This process
of updating and on-line learning is the advantage
of using the Bayesian approach in clinical trials.

Bayes’ rule is generally accepted as appropri-
ate for finding the positive predictive value of a
diagnostic test. What is controversial is whether
Bayes’ rule should be used to find probabilities of
hypotheses—such as the hypothesis that a ther-
apy is effective—on the basis of evidence from an
experiment. Such probabilities have wide appeal.
The sticking point for some is that they cannot be
found without explicitly considering the corre-
sponding prior probabilities. One must assess or
otherwise come up with the probability that a
therapy is effective in the absence of (or prior to)
the evidence from the current experiment.
Inevitably, therefore, prior probabilities have a
subjective component.1 Explicit subjectivity in
science is objectionable to some, but others view
the learning process as inescapably subjective.4, 5

The ability to include prior information in
making inferences is a major benefit of the
Bayesian approach. But collecting and assessing
information is work, and probability assessment
requires care. I will address assessing prior prob-
abilities. But in much of the remainder of this
chapter I will take prior probabilities to be given.
Typically, I assume prior probabilities that are
non-informative or open-minded 1 in the sense
that all competing hypotheses are assigned the
same prior probabilities. The assignment in the
example above, P(H1) = P(H0) = 0.5, is non-
informative in this sense. In general, it is a good
idea to consider different prior probabilities and
examine how the posterior probabilities change—
a sensitivity analysis. Also, when the Bayesian
approach is used to find designs with good fre-
quentist properties, the prior distribution can be
viewed as an aspect of the design that can be var-
ied to effect more desirable frequentist properties. 

The Bayesian approach is subjective, with
probabilities depending on the individual asses-
sor. However, many probabilities vary little if at
all from one individual to the next. For example,
suppose you plan to toss the coin and observe
whether it lands as “heads.” Most people’s prob-
ability of heads will be 1/2. That is to say, given
the choice between receiving some valued prize
should heads or tails obtain, most people would
be indifferent. Put another way, they would pre-
fer either over the other if its prize was slightly
more valuable. 

However, there is an aspect of this assessment
in which people will differ. Suppose everyone
agrees on 1/2 and the coin is tossed and results in
heads. The probability of heads on the next toss
will vary from one individual to another
(although it will not be less than 1/2 for anyone).
One person may accept that the coin is fair and
no amount of evidence would change that opin-
ion. Another may suspect that you have a coin
that is weighted to one side or the other. That per-

son may have no particular reason to choose
heads over tails, and so has probability 1/2. How-
ever, the latter person learns while the former
does not. Learning occurs in the Bayesian
approach by formulating uncertainty about the
parameters in question, in this case the probabil-
ity of heads, call it r.

Figure 33-1 shows four candidate prior distri-
butions in the left-hand panels. Even though
these distributions reflect different types of
information, in all four cases the mean of r is 1/2.
Therefore (again by the law of total probability)
the probability of heads is 1/2 in each case. 

The person in case “a” of Figure 33-1 starts
with an open mind concerning r, in that each
possible value of r has the same probability
(height of the curve). Such a distribution is non-
informative in the sense defined above. After
observing heads on a toss of the coin, and using
Bayes rule, this person’s probability distribution
becomes the one in the right-hand panel of “a.”
The updated probability of heads is 2/3. Such an
increase over 1/2 reflects person a’s open mind.
(Had the coin toss resulted in tails, then the new
probability of heads would have been 1/3.)

The left-hand panels of cases b through d in
Figure 33-1 indicate successively more infor-
mation available a priori. Therefore, the obser-
vation (heads) changes the updated probability
of heads (mean of the distribution in the right-
hand panel) less in proceeding from top to bot-
tom of the figure.

To make the above point about differential
learning, I could have chosen any types of dis-
tributions for the left-hand panels in Figure
33-1. I chose these particular distributions to
illustrate a separate point. Consider person a’s
prior distribution (left-hand panel of Figure
33-1a). Modify it by observing heads (right-hand
panel of Figure 33-1a). Now suppose a second
toss of the coin results in tails. The new distribu-
tion of r is that of person b (left-hand panel of
Figure 33-1b). The same is true moving down the
figure. So a person who starts with the distribu-
tion in the left-hand panel of Figure 33-1a and
observes heads, tails, heads, tails, heads, tails,
heads would move through the distributions in
Figure 33-1 from left to right and top to bottom
and end up in the right-hand panel of Figure
33-1d. (An implication is that the functional
forms of the eight curves shown in Figure 33-1,
moving left to right and top to bottom, are pro-
portional to the following: 1, r, r(1–r), r2(1–r),
r2(1–r)2, r3(1–r)2, r3(1–r)3, r4(1–r)3.)

ASSESSING DEGREES OF BELIEF In A Brief His-
tory of Time,6 physicist Stephen Hawking makes
clear the view that science is subjective. He
addresses the “climate of thought” in various
eras. Regarding scientific theories he uses lan-
guage such as: “It was generally accepted,” “we
now believe,” “They believed” and “if you
believe.” Subjective probabilities quantify
degrees of belief, with probability 1 meaning
complete acceptance and no chance for anything
else to be true, and probability 0 meaning com-

plete rejection. Degree of belief between these
extremes indicates the extent of one’s uncertainty.
Degree of belief depends on the person who has
the belief (as well as on the event in question).
This person could be any investigator or observer.
The event in question is arbitrary and could be
any of those referred to above, such as that one
treatment is more effective than another.

To measure degree of belief requires a scale,
just like any other measurement. For degrees of
belief the scale is a calibration experiment. The
assessor must be able to imagine an experiment
with equally likely outcomes. Candidates are
coin tosses, die rolls, selecting a chip from a
bowl, etc. To decide whether outcomes are
equally likely, suppose the assessor gets to
choose any one of the possible outcomes. I
promise to give the assessor a valuable reward
should the experimental result be the outcome

a

0 1r 0 1r

b

0 1r 0 1r

c

0 1r 0 1r

d

0 1r 0 1r

Figure 33-1 Left-hand panel in each pair is the prior
distribution of rate r of heads in coin tossing. Right-hand
panel is the posterior distribution of r after having
observed heads on one toss of the coin. The probability of
heads for each left-hand panel is 0.500, increasing to
0.667, 0.600, 0.571, 0.556 in cases “a” through “d”,
respectively, in right-hand panels. Changes are greater
and learning more rapid when the prior distribution
reflects greater uncertainty.
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chosen. Outcomes in the set are equally likely for
the assessor if the assessor is indifferent among
them. In particular, the assessor would strictly
prefer any one outcome over all others if I were
to increase the reward on that one by an arbitrar-
ily small amount. 

Consider the problem of eliciting someone’s
probability that a drug has a response rate (in a
particular population of patients) of at least 60%.
Present that person with a choice between a
reward should that event obtain and various out-
comes of a calibration experiment. For example,
observing a red chip in a selection from a bowl of
chips containing at least two colors. Varying the
proportion of red chips allows for homing in on
the individual’s probability of the event. For
details, see sections 4.4 and 7.4 of Statistics: A
Bayesian Perspective.1 Considering alternatives
to the response rate of 60% allows for finding the
assessor’s full distribution. Suppose it turns out
to be that in Figure 33-1a, left-hand panel.

There are a variety of ways to check an asses-
sor’s probabilities. One is via prediction. Each
assessment implies a learning rate. For example,
the prior distribution in the left-hand panel of
Figure 33-1a implies a probability of response
for the first patient of 50%. It also implies that if
the first patient responds then the probability of
a response in the second patient is 0.667. The
assessor should be told this and asked whether it
corresponds to his or her opinion. It may not. If
the updated probability of a response would be
closer to 0.6, then the distribution in the left-
hand panel of Figure 33-1b may more accurately
reflect the assessor’s opinions. 

Prior distributions may be—and usually
are—based on historical data. Suppose that a
similar drug (or the same drug in a different
patient population) gave a response rate of 50%
in 20 patients: 10 responders and 10 non-respon-
ders. The corresponding likelihood of response
rate r (see “Frequentist/Bayesian Comparison”
below) is r10(1–r)10. It would not be reasonable
to use this as a prior distribution for r, but it
would be reasonable to exploit this information
in some fashion. One possibility (another will be
described in “Hazards over Time”) is to discount
the historical evidence. For example, counting
the historical data at a proportion of 20% would
mean using a prior distribution proportional to
r2(1–r)2. This happens to be the distribution
shown in Figure 33-1c, left-hand panel.

An advantage of basing prior distributions on
historical information is that more observers are
likely to have similar prior views, and therefore
similar posterior views.

ROBUSTNESS PRINCIPLE An important robust-
ness principle is that in the presence of at least a
moderate amount of data, essentially all
observers will have the same posterior distribu-
tion. That is, the particular prior distribution
assumed does not matter much when the sample
size is moderate to large. As an example, con-
sider the eight distributions shown in Figure 33-1
and think of them as being the prior distributions

of eight different people. Parameter r is response
rate to a particular drug. Suppose that 40 patients
were treated in a trial and there were 20 respon-
ders and 20 non-responders. Applying the
robustness principle, the eight individuals in
question will come to very nearly the same con-
clusion about response rate r. The eight posterior
distributions are shown in Figure 33-2. These are
very similar, as is evident from the figure. And
the corresponding 95% probability intervals will
also be very similar. 

There are circumstances in which the robust-
ness principle does not apply. All have to do with
individuals who assign small probabilities with
possible values of the parameter in question. As
a special case, an assessor who dogmatically
assigns prior probability 1 to a particular interval
will also assign posterior probability 1 to that
interval. Such an individual does not learn,
except when restricted to that interval. In the
example with 20 responders of 40 patients,
someone who assigns 0 prior probability to
r < 0.5 would have a posterior distribution simi-
lar to that in Figure 33-2, except that it would be
0 to the left of r = 0.5.

FREQUENTIST/BAYESIAN COMPARISON In con-
trast to the Bayesian approach, the frequentist
approach does not allow hypotheses to have
probabilities. Rather, the approach restricts prob-
ability assignments to data, assuming particular
values of the unknown parameters (or hypothe-
ses) in calculating these probabilities. For exam-
ple, a p-value is the probability of the observed
data or more extreme data, assuming that the null
hypothesis is true. In symbols:

Frequentist p-value: P(observed or more extreme data|H0)
Bayesian posterior probability: P(H0|observed data)

As an example, consider a single-arm Phase
II trial for testing H0: r = 0.5 versus H1: r = 0.75.
Assuming a type I error rate a = 5%, a sample
size of n = 33 gives 90% power. Suppose there
are 22 successes and 11 failures. The (frequen-
tist) one-sided p-value is the probability of 22 or
more successes of the 33 patients assuming the
null hypothesis, H0: r = 0.5. Under this assump-
tion the probability of observing 22, 23, 24, . . .
successes is 0.0225+0.0108+0.0045+ . . . =
0.0401. Since this p-value is less than 5%,
observing 22 successes is said to be “statistically
significant.” 

The Bayesian measure is the posterior proba-
bility of the hypothesis that r = 0.75 (which is
one minus the probability of r = 0.5) given 22
successes out of 33 trials. (As indicated above,
the Bayesian calculation depends only on the
probability of the data actually observed, 22 suc-
cesses of 33, while the frequentist calculation
also includes probabilities of 23, 24, etc. suc-
cesses.) Using Bayes’ rule:

P(H1|22 of 33) = P(22 of 33|H1)P(H1)/P(22 of 33)

As above, the denominator follows from the
law of total probability:

P(22 of 33) = P(22 of 33|H1)P(H1) + P(22 of 33|H0)P(H0)

= (0.0823)(0.5) + (0.0225)(0.5)

= 0.0524

So

P(H1|22 of 33) = (0.0823)(0.5)/0.0524 = 0.785

P(H0|22 of 33) = (0.0225)(0.5)/0.0524 = 0.215

The above calculation considers just two
hypotheses, r = 0.5 and r = 0.75. In considering
other values of r, Bayes’rule weighs them by P(22
of 33|r), which is called the likelihood function of
r. The likelihood function is pictured in Figure
33-3. It indicates the degree of support for success
rate r provided by the observed data. Values of r
having the same likelihood are equally supported
by the data. Only relative likelihoods matter. For
example, conclusions about r = 0.5 versus 0.75
depend only on the ratio of their likelihoods
0.0823 and 0.0225, values that are highlighted in
Figure 33-3. Since 0.0823/0.0225 = 3.66, the data
lend 3.66 times as much support to r = 0.75 as
compared with r = 0.5.

The conclusions of the two approaches are
fundamentally different conceptually, and they
are also different numerically. In the frequen-
tist approach the results are statistically signif-
icant, with p-value = 0.0401. Such a small
p-value is interpreted by some as being suffi-
cient to conclude that H0 is not true. On the
other hand, the Bayesian posterior probability
of H0 is 0.215. This is decreased from the prior
probability of 0.50, but it is more than 5 times
larger than the p-value. 

Interval estimates also have different inter-
pretations in the two approaches. In the Bayesian

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
r

Figure 33-2 Posterior distributions for response rate r
based on an experiment with 20 successes and 20 failures.
The eight prior distributions considered are the eight dis-
tributions shown in Figure 33-1. Except for proportional-
ity constants these are 1, r, r(1–r), r2(1–r), r2(1–r)2,
r3(1–r)2, r3(1–r)3, and r4(1–r)3. The corresponding poste-
rior distributions are proportional to r20(1–r)20,
r21(1–r)20, r21(1–r)21, r22(1–r)21, r22(1–r)22, r23(1–r)22,
r23(1–r)23, and r24(1–r)23. These are very similar, demon-
strating the robustness principle.



4 SECTION 5  /  Clinical Trials and Outcomes Assessment

approach, one can find the probability that a
parameter lies in any given interval. In the fre-
quentist approach, confidence intervals have a
long-run frequency interpretation for fixed
parameters. However, despite such very different
interpretations, there is a point of agreement
between the two approaches. Namely, if the prior
distribution is non-informative then the Bayesian
posterior probability of a confidence interval is
essentially the same as the frequentist level of
confidence. For example, if the prior distribution
is non-informative then the Bayesian posterior
probability that a parameter lies in its 95% con-
fidence interval is in fact 95%. For other prior
distributions the posterior probability of a 95%
confidence interval may be greater than or less
than 95%.

PREDICTIVE PROBABILITIES The Bayesian
approach allows for calculating the probability
of data without having to condition on a particu-
lar parameter value; namely, one averages the
conditional probabilities of the data over the var-
ious possible parameter values. This is advanta-
geous for both monitoring trials and designing
trials from the outset. Predictive probabilities
will be exploited extensively in this chapter. 

Consider an example based on the trial
described above. Suppose that the first
16 patients have responded, with 13 successes
and 3 failures. What will be the results after the
full complement of 33 patients? It is impossible
to say for certain, of course, but there is some
information available for predicting this number.
Conditioning on the information that is currently
available allows for calculating probabilities for
the future results in the Bayesian approach. 

It might seem reasonable to estimate r to be
13/16 = 0.81, the currently observed success pro-
portion, and to calculate the probability of the

results of the next 17 patients assuming this
value of r. But this would be wrong. For one
thing, we have restricted consideration to only
two values of r, 0.5 and 0.75. But even if r were
unrestricted and could be any value between
0 and 1, the information in a finite sample is not
sufficient to say for certain that r has a particular
value. The uncertainty in r is considered explic-
itly in a Bayesian approach.

Bayesian predictive probabilities incorporate
two types of variability. One is the usual sam-
pling variability that applies even if success rate
r were perfectly known. (You don’t always get
the same result when you toss a fair coin.) The
other uncertainty is in the success rate r. (You
don’t really know that a coin is fair even if you’ve
tossed it many times.) Assuming 13 successes in
the first 16 patients, the possible numbers (S) of
successes after 33 patients are shown in the first
column of Table 33-1. The second and third
columns show the probabilities of the possible
values of S for the two r’s assumed in this exam-
ple. The corresponding probabilities without
conditioning on r are shown in the fourth col-
umn. This is a weighted average of the second
and third columns. The weights are the respec-
tive probabilities of the two values of r condi-
tional on having observed 13 successes in the
first 16 patients: 0.039 for r = 0.5 and 0.961 for
r = 0.75. The fourth column evinces greater vari-
ability (greater standard deviation) than either of
the previous two columns. Typically, including
when all values of r between 0 and 1 are consid-
ered (that is, all values have positive probability),
predictive probabilities reflect greater uncer-
tainty about future results than when condition-
ing on a particular value of r. (The last column of
Table 33-1 will be discussed in the next section)

For convenience, in this example I assumed
equal prior probabilities: P(H1) = P(H0) = 0.5.

Although there is no vertical bar “|” in these
expressions, these probabilities can depend on
other available evidence, such as results of ear-
lier clinical and pre-clinical trials. There may be
additional information from biological assess-
ments, such as when considering targeted thera-
pies. These overall conditions are taken to be
understood in setting down P(H0) and P(H1).

BAYESIAN VERSUS FREQUENTIST INTERIM

ANALYSES There are numerous commonalties
and a few differences between the Bayesian and
frequentist approaches. This section addresses a
principal difference. In the Bayesian approach,
one makes an observation and updates the prob-
abilities of the various hypotheses. This simple
process implies a degree of flexibility that is dif-
ficult to mimic in the frequentist approach.

Consider the trial design described above,
with n = 33 patients and testing H0: r = 0.5 ver-
sus H1: r = 0.75. Observing 22 or more suc-
cesses will be sufficient to reject H0 in favor of
H1. However, assigning 33 patients to an experi-
mental therapy without assessing interim results
is ethically problematic and would likely be
questioned by institutional review boards. If the
results are conclusive (either positive, strongly
suggesting r > 0.5, or negative, suggesting
r ≤ 0.5) part of the way through the trial, then it
should be stopped. Suppose, for example, that
after 16 patients, 13 are successes and 3 are fail-
ures. From a Bayesian perspective, the updated
probability of H1 is 96.1% (assuming prior prob-
ability P(H0) = 0.5). 

Whether this probability is “conclusive” is not
clear. The decision as to whether to continue a trial
is complicated. It depends on the consequences of
the trial given the current results and also given
future results. In the Bayesian approach, conse-
quences of future results can be weighed by their

Figure 33-3 Likelihood of r for 22 successes out of 33
observations, P(22 of 33|r), which is proportional to
r22(1–r)11. The likelihoods at r = 0.5 and 0.75 are high-
lighted. These values are used in the calculational exam-
ple in the text.

0

0.0225

0.0823

r 22 (1-r)11

.1 .2 .3 .4 .5 .6 .7 .8 .9 1
r

Table 33-1 Predictive Probabilities of Number S of Successes after 33 Patients given 13 Successes 
in the First 16 Patients

S (of 33) P(S|r = 0.5) P(S|r = 0.75) P(S|13/16) P(H1|S/33)

13 0.0000 0.0000 0.0000 0.0002
14 0.0001 0.0000 0.0000 0.0006
15 0.0010 0.0000 0.0000 0.0017
16 0.0052 0.0000 0.0002 0.0050
17 0.0182 0.0000 0.0007 0.0148
18 0.0472 0.0001 0.0019 0.0432
19 0.0944 0.0005 0.0042 0.1192
20 0.1484 0.0025 0.0082 0.2887
21 0.1855 0.0093 0.0162 0.5491
22 0.1855 0.0279 0.0341 0.7851
23 0.1484 0.0668 0.0701 0.9164
24 0.0944 0.1276 0.1263 0.9705
25 0.0472 0.1914 0.1857 0.9900
26 0.0181 0.2209 0.2129 0.9966
27 0.0052 0.1893 0.1820 0.9989
28 0.0010 0.1136 0.1091 0.9996
29 0.0001 0.0426 0.0409 0.9999
30 0.0000 0.0075 0.0072 1.0000

Columns P(S|r = 0.5) and P(S|r = 0.75) assume the indicated value of r in calculating the probability. Column P(S|13/16) is the weighted

average of the two previous columns, where the respective weights are 0.039 and 0.961. The last column gives P(H1|S/33), the probabil-

ity of H1: r = 0.75, given S successes after 33 patients. The shaded cells are described in the text.
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predictive probabilities. (see “Decision Analysis
and Choosing Sample Size” below) For example,
if the impact of the trial depends on whether the
posterior probability of H1 is > 95% when the data
from the full complement of 33 patients becomes
available, then one can calculate the predictive
probability of this event. The last column in Table
33-1 shows the posterior probability of H1 assum-
ing S successes of 33 patients. The shaded values
are those having P(H1|S/16) > 95%. To achieve
> 95% posterior probability requires at least
24 successes in the 33 patients. The predictive
probability of this event is the sum of the predic-
tive probabilities for S ≥ 24 (the fourth column in
Table 33-1), which is 0.8642. Although the cur-
rent probability of H1 is > 95%, this characteristic
will be lost with probability 1 – 0.8642 = 0.1358.
That this has moderate probability indicates the
tentative nature of the current conclusion. The
possibility that the current conclusion is moder-
ately likely to change can be factored into the
decision to continue the trial. 

Alternatively, and mixing Bayesian and fre-
quentist concepts, if the impact of the trial
depends on achieving (one-sided) statistical sig-
nificance then the Bayesian predictive probability
of this event means adding the probabilities of 22
and 23 successes to 0.8642, the total being 0.9684.

If the predictive probability that the current
conclusion will be maintained is sufficiently
high then one may reasonably decide to stop a
trial. This is true for both claims of futility and
superiority. The possibility of stopping a trial
early on the basis of predictive probability
should be stated explicitly in the trial’s protocol.

The focus of the frequentist perspective is the
type I error rate, a. This is the probability of
rejecting H0 when H0 is true, which depends on
the trial design. For a fixed sample size of
33 patients, the calculation is straightforward.
Rejecting H0 for ? 22 successes means a = 0.0401
(see previous section). The calculation becomes
more complicated when there is a possibility of
stopping the trial early. In the example, if the trial
is stopped and H0 is rejected if there are 13 or
more successes in the first 16 patients then a is
increased because there is additional opportunity
for rejecting H0. Assuming r = 0.5, the probabil-
ity of rejecting H0 is now 0.0712. (The possibil-
ity that r is different from its null value plays no
role in calculating the type I error rate.) Since this
is greater than 0.05, the convention is to modify
the stopping and rejection criteria to reduce a to
about 0.05. For example, rejecting only if there
are 14 successes or more out of 16 patients, or if
there are 23 or more successes after 33 patients,
gives an overall type I error rate of 0.0326.

It follows that it is more difficult to draw a
conclusion of statistical significance when there
are interim analyses. The reason is that the type I
error rates are calculated assuming that a partic-
ular hypothesis (the null hypothesis of no effect)
is true. In a sense an investigator is penalized for
interim analyses in the frequentist approach.
There are no such penalties for interim analyses
in a Bayesian perspective. The reason is that

Bayesian probabilities do not condition on any
particular hypothesis. 

Although it is not a Bayesian quantity, the
type I error rate of any Bayesian design—how-
ever complicated—can be evaluated. If the
design has interim analyses, then such a calcula-
tion incorporates appropriate penalties. This cal-
culation is straightforward in a simple example
such as that given above. In more complicated
settings it can require Monte Carlo simulations.
To find a via simulation in the above example,
toss a fair coin 16 times. Make a tick mark if you
get 13 or more heads and stop tossing. Otherwise
toss the coin an additional 17 times and make a
tick mark if the total number of heads is 22 or
more. Repeat the process thousands of times.
(Program a computer to do the tossing!) Esti-
mate a to be the number of tick marks divided by
the number of times you simulated the process.
Assuming that your random number generator is
working properly, you’ll find that the proportion
with tick marks is about 7%.

ANALYSIS ISSUES

The purpose of this section is to consider two
rather special analysis issues. The first is a natu-
ral extension of the previous section. The second
is unrelated to the first and deals with a particu-
lar aspect of survival analysis.

HIERARCHICAL MODELING: SYNTHESIZING

INFORMATION When analyzing data from a
clinical trial, other information is usually avail-
able about the treatment under consideration.
This section deals with a method for synthesiz-
ing information from a variety of sources. The
method applies for incorporating historical
information and for meta-analysis.

Suppose the Phase II trial discussed above
gave 21 successes in 33 patients. The one-sided
p-value is 0.08, and so the results are not statisti-
cally significant at the 5% level. The posterior
probability of H1: r = 0.75 (in comparison to H0:
r = 0.5) is only 54.9%, barely changed from its
prior probability of 50%. However, in another trial
using the same treatment there were 15 successes
among 20 patients. This other trial may have been
conducted at another institution or at an earlier
time (perhaps Phase I, in which response to ther-
apy was also assessed) at the same institution. In
either case, it seems wrong to use a statistical pro-
cedure that ignores the information.

Bayes’ rule allows for combining the results
of many trials, but there are pitfalls. From a fre-
quentist perspective, one can assume that the data
resulted from a single trial with a fixed sample
size of 53 patients. The p-value for 36 successes
among 53 patients is 0.0063, highly statistically
significant. An analogous Bayesian assumption is
that the same success rate r applied in both trials.
The corresponding likelihood is shown in Figure
33-4. The ratio of likelihoods at r = 0.75 and
r = 0.5 is 16.7, and so the former nets 16.7 times
as much support as the latter. Assuming
P(H0) = P(H1) = 0.5 as before, the corresponding
updated probability of H1: r = 0.75 is 94.3%.

The naive frequentist analysis in the above
paragraph is wrong because there were two tri-
als and not one. And it is not clear how to repair
that analysis. A variety of approaches have been
suggested, but none is very satisfactory. The fre-
quentist approach is experimental-specific and
modifications of the experiment make conclu-
sions difficult.

The above Bayesian analysis is also wrong
because the success rate r may reasonably vary
from one trial to another. The two success rates
may be different even if the eligibility criteria in
the two trials are the same. Because of differ-
ences in concomitant therapy and limitations in
assessing prognostic variables, the two rates
may even be different if the patients admitted
have the same distribution of clinical character-
istics. A way to repair the analysis is to explic-
itly consider two values of r, say r1 for the first
trial and r2 for the second. These two r-values
may be the same or different.

A hierarchical model is a random-effects
model. One level of experimental unit is patient
(within trial) and the second level is trial itself.
Of interest is the population of trials and its dis-
tribution. The data give information about
whether this population has little variability
(homogeneity) or much variability (heterogene-
ity). In the former case the precision of parame-
ter estimates will be greater than in the latter case
because there will be greater “borrowing of
strength” across the trials. Should it happen that
the results of the trials vary greatly from one to
the next then there will be little borrowing and
the information from an individual trial will not
apply much beyond that trial.

To understand the concept of a hierarchical
model, think of the two r’s as coming from a pop-
ulation, one indexed by the possible trials. If this
population is homogeneous then the two r’s are
likely to be similar, and if it is heterogeneous then
the two may well be quite different. Whether it is
homogeneous or heterogeneous is not known. As
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Figure 33-4 Likelihood of r for 36 successes out of 53
observations, P(36 of 53|r), which is proportional to
r36(1–r)17.
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usual in a Bayesian approach, unknowns have
probability distributions. So the distribution of
r-values itself has a distribution, one about which
we have information from the two trials. Namely,
we have 15 successes for 20 patients on r1 and 21
successes for 33 patients on r2. In a typical statis-
tics problem, one makes observations from a pop-
ulation of interest. The observations are usually
numerical. But in the present circumstance,
instead of observing the number r1 for trial 1, the
observation is the likelihood function for r1: in a
sense, each possible value of r1 is observed with
weight given by its likelihood, with the total
weight being 1. Similarly for trial 2 and r2. The
two likelihood functions are shown in Figure 33-5.
The tightness in these curves conveys the uncer-
tainty that is present in these two observations. 

Although we want to incorporate the informa-
tion from the first trial into our inferences, our
principal focus is r2. Bayesian calculations require
a prior distribution. For illustrative purposes I will
assume one that is especially simple. Continue to
assume that the r’s can be only 0.5 or 0.75. Further
assume that either (1) all the r’s in the population
of trials are equal (prior probability 0.5) or (2) half
of them equal 0.5 and the other half equal 0.75
(with the remaining prior probability of 0.5). In
case (1), r2 = r1 and so the data can be simply
pooled. In case (2) the data for each trial stand on
their own. The prior weights of cases (1) and (2)
are both 0.5, but these probabilities are to be
updated in view of the results of the two trials.

Calculating the posterior probabilities of
cases (1) and (2) is straightforward, but some-
what tedious. It turns out to be 0.864 for 1) and

0.136 for (2). Now the posterior probability of
H1: r2 is 0.75 is easy find. This calculation
uses the above calculations that the probability
of r2 = 0.75 is 94.3% in the pooled analysis (1)
and 54.9% in the separate analysis (2). Since
we know the posterior probabilities of these
two cases:

P(H1|data) = (0.864)(0.943) + (0.136)(0.549) = 0.889.

The probability of H1: r2 = 0.75 is 88.9%,
increased from that for the separate analysis but
not as compelling as the pooled analysis.

More generally, there may be any number of
related studies or databases that provide support-
ive information regarding a particular therapeu-
tic effect. The studies may be heterogeneous and
may consider different patient populations. The
next example is generic but it is more compli-
cated than the previous example because it
includes nine studies.7 The only commonalty in
the studies is that all addressed the efficacy of
the same therapy. 

This setting is more realistic than that of the
previous example because the success rates can
take on any value between 0 and 1. The number S
of successes and sample size n is shown for each
study in Table 33-2 and in Figure 33-6. There are
nine true success rates, one for each study (of
which the sample success proportions S/n are
estimates). Assuming the same success rate r
applies in all nine studies, and pooling the data
accordingly, there were 106 successes among 150
patients. The posterior distribution of success rate
r (assuming a non-informative prior distribution)
is labeled “pooled analysis” in Figure 33-6. 

It is questionable whether one should ever
assume that different studies have the same suc-
cess rate. In this example such an assumption is
especially suspect. The nine observed success
proportions evince more variability than is con-
sistent with the possibility of equal success rates.
Therefore, assuming homogeneity and pooling
the results of the nine studies seem inappropri-
ate. The “hierarchical analysis” curve in Figure
33-6 is a Bayesian estimate of the distribution of
success rates in the population of studies. (This
curve is the mean posterior distribution assum-

ing a non-informative prior on a particular class
of distributions, called beta distributions.) As is
typical of hierarchical analyses, this curve shows
greater variability than does the analog assuming
homogeneity.

In a hierarchical analysis, an individual
study’s success rate has a distribution that
depends on the data from that study, but it also
depends on the data from the other studies. The
last column of Table 33-2 shows the mean of the
distribution of each study’s true success rate.
This is also the predictive probability of success
for a future patient in that study. The individual
study probabilities are shrunk toward the overall
mean. This shrinkage is greater for smaller stud-
ies, and for studies with observed proportions
further from the overall mean. 

Figure 33-7 provides a pictorial comparison
of the rightmost two columns in Table 33-2,
demonstrating shrinkage. The Bayesian esti-
mates are intermediate between simple pooling
(complete shrinkage) and each trial standing
alone. The amount of shrinkage—including the
above two extremes—depends on the prior dis-
tribution of the population of trials. This aspect
of the prior distribution should be set in advance,
or varied to allow for assessing the sensitivity of
the overall conclusion.
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Figure 33-5 Likelihood of r1 is r1
15(1–r1)5 for trial 1.

Likelihood of r2 is r2
21(1–r2)12 for trial 2. These two like-

lihoods represent a sample of size 2 from the population
of likelihood functions, one for r1 and the other for r2. The
perspective in the drawing is meant to suggest the r-
dimension in this population. (For convenience, the two
likelihoods are shown having the same area under the
curve. However, these areas are irrelevant since infer-
ences depend only on ratios of likelihoods within the
same curve.) These two likelihoods contrast with the sin-
gle likelihood shown in Figure 33-4, wherein r1 and r2 are
assumed to be equal and r is their common value.

Table 33-2 Numbers of Successes S, Sample Size n, Observed Success Proportions (including its standard error) 
and Adjusted Estimates of Success Rates by Study

Success prop. Bayes estimate

Study Successes, S Sample size, n (standard error) (standard dev)

1 11 16 0.69 (0.116) 0.69 (0.094)
2 20 20 1.00 (0.000) 0.90 (0.064)
3 4 10 0.40 (0.155) 0.53 (0.121)
4 10 19 0.53 (0.115) 0.57 (0.094)
5 5 14 0.36 (0.128) 0.48 (0.109)
6 36 46 0.78 (0.061) 0.77 (0.058)
7 9 10 0.90 (0.095) 0.80 (0.097)
8 7 9 0.78 (0.139) 0.73 (0.110)
9 4 6 0.67 (0.192) 0.68 (0.125)
Totals 106 150 0.71 (0.037) 0.68 (0.064)

The Bayes estimate column is described in the text.
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Figure 33-6 The dot plot on the r-axis shows the
observed success proportions given in Table 33-2. The
areas of the dots are approximately proportional to sam-
ple sizes n. The pooled analysis curve shows the distribu-
tion of success rate r assuming no study effect. The hier-
archical analysis curve shows the Bayesian estimate of the
distribution of success rates allowing for heterogeneity
across the various studies.
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Shrinkage is a consequence of hierarchical
modeling. The motivation for such modeling is
to utilize the available information appropriately
in improving precision or in decreasing sample
size required. Consider study 1 in Table 33-2.
Simply pooling the data from the other eight
studies would greatly increase the precision of its
estimated success rate. Namely, the standard
error would be reduced from 0.116 to 0.037. But
in view of the heterogeneity in the studies, such
pooling would not be justified. 

Borrowing hierarchically also strengthens
the conclusion, with the standard deviation of the
Bayes estimate being about 20% smaller, from
0.116 to 0.094. Although not nearly as great as
the reduction with unabashed pooling, hierarchi-
cal borrowing is defensible because it does not
make the assumption that all studies had the
same true success rate, and because the extent of
borrowing is determined by the data. This reduc-
tion implies more than 50% savings in sample
size necessary to carry out a clinical trial (in the
setting of study 1) with the same precision:
(0.116/0.094)^2 – 1 = 52%. For example, to
achieve the same standard error in a stand-alone
study would require 25 as opposed to 16 patients.

Patient covariates can be incorporated into a
hierarchical analysis, thus adjusting for known
differences in the studies but still accounting for
unknown effects. In this example and in more
complicated hierarchical settings as well,8 mod-
eling allows for borrowing from other studies
and databases. If the results are consistent across
studies then the amount of borrowing will be
greater. If the results are sufficiently different
(after accounting for covariates) then this sug-
gests heterogeneity among the studies and there
is little borrowing.

HAZARDS OVER TIME

Time-to-event analyses are ubiquitous in cancer
research: the word “survival” appears about
100 times in Chapter 32. There are Bayesian ana-
logues of survival analyses as described in that
chapter. And there are hierarchical Bayesian ana-
logues in which survival curves are allowed to
depend on category of patient or to vary with the
study in meta-analyses. However, my purpose in
this section is not to extend the more traditional
survival models and analyses to the Bayesian set-
ting. Rather, I will focus on a narrow and simple
aspect of survival analysis, but one that opens up
understanding not possible otherwise. I will do

this using data from a clinical trial, number 8541
of the Cancer and Leukemia Group B (CALGB).9

This trial considered three different dose-
schedules of cyclophosphamide, doxorubicin,
and 5-fluorouracil (CAF) in node-positive breast
cancer: high, moderate (mod) and low. These are
respectively, four cycles of CAF at 600, 60 and
600 mg/m2, six cycles at 400, 40, 400, and four
cycles at 300, 30, 300. The primary end-point
was disease-free survival, which is shown in Fig-
ure 33-8 for the three dose-groups using Kaplan-
Meier plots. I am not providing p-values for the
various comparisons (high vs mod, high vs low)
because whether these are statistically signifi-
cant is not material to my purpose.

Time-to-event curves such as those in Fig-
ure 33-8 do not tell the whole story regarding
any benef it of increasing dose and dose-
intensity. A clearer picture is contained in
hazard plots over time. 

Hazards are the proportions of events from
one time period to the next for those patients who
are at risk at the beginning of the period. For
example, if there are 100 patients in a group and
10 of these recur in the first year, then the first-
year hazard is 10%. Going into the second year
there are 90 patients at risk. If another 10 recur in
the second year, then the second-year hazard is
10/90 = 11%. When calculating hazards from
survival plots such as those in Figure 33-8
(which incorporate censored observations), sub-
tract the current year’s survival proportion from
last year’s survival proportion and divide by the
last year’s survival proportion. The resulting
yearly values are shown in Figure 33-9.

A striking observation from Figure 33-9 is
that all three hazards decrease over time (after
the first year). This is a reflection of the hetero-
geneity of breast cancer. The most aggressive
tumors recur early, giving the high hazards evi-
dent in the first few years. Once their tumors
have recurred, patients are removed from the at-

risk population. The remaining tumors are much
less aggressive and so they recur at a lower rate.

Regarding a treatment-arm effect, the appar-
ent benefit of the high-dose schedule is restricted
to the first five years or so. Actually, the hazard
for patients on the high-dose schedule is lower
than those of the other two arms in each of the
first six years. (Although it is not much lower in
the last few of these six years and it is not much
lower than the moderate-dose schedule at any
time.) This observation is impressive because
each year is like a new study, with previous recur-
rences not counted when starting a new year.

Another observation from Figure 33-9 is that
after 5 years the risks of all three groups con-
verge, with the annual risk of recurrence being
approximately 5% in all three groups.

The reduction in hazard of recurrence for
high versus low is 14% over the 18 years of fol-
low-up (95% confidence interval: 6-22%). This
is an average over these years (weighted over
time because of differences in at-risk sample
sizes over time). But since there is no reduction
at all in the later years, the overall reduction is
being carried by the early years. Restricting to
the first 3 years, the reduction is 24% (13-33%).
A benefit of chemotherapy that is restricted to
the first few years is typical in breast cancer tri-
als. An implication is that a hazard reduction
seen early in a trial, say one with a median of
three years of follow-up, will deteriorate over
time. This is because the comparison will even-
tually involve averaging over periods where there
is no longer a treatment benefit.

In the later years, the hazards of about 5% are
very similar to the annual hazard for node-nega-
tive breast cancer patients. Interestingly, conver-
gence to about 5% applies irrespective of the
number of positive lymph nodes. Figure 33-10
shows this effect. It gives hazard plots for three
categories of positive nodes: 1-3, 4-9 and 10 or
more (for the three dose groups combined).
Early in the trial, patients with 10+ positive
nodes have a very high annual recurrence rate of
20-30%. However, after five years or so, the
annual hazard is about 5% in all three groups. So

Figure 33-8 Disease-free survival proportion for the
three CAF dose-groups of CALGB 8541.
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Figure 33-7 Comparison of the two rightmost columns
in Table 33-2. The dot plot on the r-axis shows the
observed success proportions, just as in Figure 33-6. The
Bayes estimates assume a hierarchical model and show
shrinkage toward the overall mean.

Figure 33-9 Hazards for the three CAF dose-groups of
CALGB 8541, derived from Figure 33-8.
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a woman with a large number of positive nodes
who has not experienced disease recurrence in
the first five years or so has the same updated
prognosis as a woman with a small number of
positive nodes, including no positive nodes. The
effects of both the number of positive nodes and
dose of CAF have worn off after 5 years. 

An important aspect of CALGB 8541 is the
role of tumor HER-2/neu expression, and in par-
ticular its interaction with dose of CAF.10 HER-
2/neu assessment was carried out for a subset of
992 patients from the original study. Its interac-
tion with dose was shown to be significant in a
multivariate proportional hazards model. But the
manner of interaction is easiest to understand
using hazards. Figure 33-11 shows the effect of
dose of CAF separately for patients with HER-

2/neu–negative (n = 720) and –positive (n = 272)
tumors. HER-2/neu negatives show no dose
effect. The entire benefit of the high- over the
moderate-dose treatment schedule, and the high-
over the low-dose treatment schedule that is
observed in these patients is concentrated in
HER-2/neu positives. Moreover, this benefit
occurs through a reduction in hazard in each of
the first 3-4 years. Again, each year is a separate
study and so each of these years provides a sepa-
rate confirmation of the overall conclusion. The
hazard reduction in the first three years for
patients receiving the high-dose treatment sched-
ule as compared with the other two groups com-
bined, was 65% among HER-2/neu–positives.
HER-2/neu overexpression apparently conveys a
poor prognosis for lower doses but not for higher
doses—it might even provide a favorable prog-
nosis for patients receiving higher doses.

Many of the conclusions in this section
would have been difficult or impossible to make
without considering hazards over time.

A final comment regarding hazards relates to
the common problem of predicting survival
results into the future for patients already
accrued to a trial. This differs from the general
problem of prediction discussed in “Predictive
Probabilities” earlier. Consider Figure 33-8.
Some of the patients have as little as 10 years of
follow-up information. As more follow-up infor-
mation becomes available, there will be no
change in these curves prior to the 10-year time
point. But the curves are subject to change
beyond 10 years. Because the focus is on patients
for whom the tumor has not yet recurred, the way
the curves will change depends on the hazards
beyond 10 years. The information available
about these hazards is shown in Figure 33-9. For
predicting when and whether a patient’s disease
will recur, consider hazards one year at a time,
always building on her current year of follow-up.
Each incremental hazard prediction depends on
the data for the corresponding year.

DECISION ANALYSIS 
AND CHOOSING SAMPLE SIZE

Clinical practice and clinical research involve
making decisions. An example of the latter is
choosing the sample size of a clinical trial. It is
impossible to precisely predict the result of mak-
ing a particular decision. But one can list the
possible results and associate (predictive) proba-
bilities with each. Also associated with each pos-
sible result are the consequences of that result. A
list of results, probabilities and consequences
characterizes each decision, and allows for
choosing one decision over another.

The consequences of a particular decision are
many faceted. I consider the case in which con-
sequences are unidimensional, and numerical. A
particular “number” can always be assigned to a
consequence, at least in theory. Numerical
assignments that indicate the overall worth or
benefit of a consequence is called its utility.
Given a list of results, their probabilities and
their utilities, it is still not clear how to weigh the
various utilities. The convention in decision
analysis is to average the utilities with respect to
the associated predictive probabilities. The
resulting average is the utility of the decision in
question, and the various possible decisions can
be compared on the basis of their utilities. The
central role of predictive probabilities in this pro-
cess makes the Bayesian approach ideally suited
for decision making.

The terms decision making, decision analy-
sis, and decision theory are used more or less
interchangeably. Many references develop this
subject more deeply than is possible here.11–14

A simple example may help fix the concept.
You are offered a chance to win a prize worth $10
to you—that is, its utility is 10. It costs $1 to play.
There are two decisions: play and not play. If you
play then you will end up with a utility of either
9 or –1. Suppose that the probability of the for-
mer is p. (A class of decisions in which one can
get information about p is interesting and reveal-
ing, but it is not considered here.) The utility of
playing is then 9p–(1–p) = 10p–1. The utility of
not playing is 0. The former is greater than the lat-
ter if p > 0.1 and so the playing is better (accord-
ing to decision-analytic convention) if p > 0.1.

Averaging utilities to assess taking gambles
is well and good. But it is less clear that it is
appropriate when outcomes are health states or
results of clinical trials. Moreover, it may be dif-
ficult to assess the utilities of such outcomes.
However, one must make a decision. And when
faced with a list of outcomes and their associated
probabilities for each available decision, reduc-
ing the lists to a single dimension greatly facili-
tates choosing among them. In addition, varying
the probabilities and utilities assumed allows for
assessing sensitivity of the various aspects of the
decision process.

Consider a decision-analytic approach for
choosing a sample size in a two-armed clinical
trial. The purpose of clinical trials is to learn
about competing therapies. The reason for want-
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Figure 33-10 Hazards for the three categories of posi-
tive lymph nodes (1-3, 4-9, and 10 or more) for CALGB
8541. There are few patients at risk in the later years,
especially in the 10+ group, and for two reasons. One is
that this was the smallest group to start, with 174 of the
1550 patients in the trial, and the other is that most
recurred early. The asterisk at 13 years indicates a point
where there were only 24 patients at risk, and 3 of these
recurred in the 13th year.
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Figure 33-11 Annual disease-free survival hazards for a subset of patients (n = 992) in CALGB for whom expression
of HER-2/neu in the patient’s tumor was assessed. Patients in the left-hand panel were HER-2/neu–negative and those in
the right-hand panel were HER-2/neu–positive. 
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ing to learn about competing therapies is to
affect the future treatment of patients having the
disease in question. In a decision analysis one
can consider good medicine to all patients who
have the disease. The utility of any particular
design of a clinical trial is its consequent impact
on patients who have the disease, including those
patients in the trial and those outside the trial. Let
N be the size of the “patient horizon,” those
patients who will benefit from the conclusions of
the clinical trials being planned.

The value of patient horizon N varies depend-
ing on the disease and the available treatments.
The population of patients with primary breast
cancer who might benefit from an advance in
therapy is very large. But few would benefit
from an advance in a rare type of children’s can-
cer. These two extremes are addressed in the
same way when choosing sample sizes via power
calculations. Taking the same tack in both cases
cannot be right from the perspective of treating
as many patients with the disease in question as
effectively as possible. In the case of small N, a
substantial portion of the patients—perhaps
all—may be in the clinical trial and so few if any
patients will get to take advantage of results
obtained in the trial. In the case of large N, the
trial may be too small to enable an informed
choice between the two treatments and so the
very large number of patients outside the trial
may be treated with an inferior therapy. A con-
clusion of this section is that when the goal is
treating as many patients as effectively as possi-
ble, the sample sizes of the clinical trials in these
two extremes should be very different.

The size of N is not usually precisely known.
In particular, N depends on the effectiveness and
side effects of both treatments, which are also
unknown. However, a consequence of this section
is that only the order of magnitude of N should be
considered in choosing sample sizes of clinical tri-
als. Precision in fixing N is not very important.
Considering the extremes, diseases or conditions
that are very common (large N) call for larger tri-
als than do rare diseases (small N). Moreover,
when N is unknown, the results of this section rely
upon replacing N with its mean. So experts could
assess the annual size of the patient population
and the potential availability of other therapies
over the next several years. Patients presenting in
the future could be discounted by the probability
they will be treated using one of the treatments
involved in the trial. This gives an expected value
of N that can be used in designing the trial.

For convenience, consider dichotomous out-
comes: success and failure. The goal is to treat
as many of the N patients successfully as possi-
ble with one of two therapies. The utility of any
trial is the number of successes over the patient
horizon (including both those in the trial and
those beyond). An optimal sample size maxi-
mizes the expected number of successes over
the patient horizon N. By definition, patients in
the horizon are those who present after the trial
and who are given the therapy that performed
better in the trial.

The optimal trial sample size has order of
magnitude square root of N.15 If there are two
clinical trials (followed by clinical practice with
the better performing therapy) then the first of
the two should have sample size with order of
magnitude cube root of N. Table 33-3 considers a
setting in which the optimal trial sample size for
a common disease with N of about one million
turns out to be 1000. The point of the table is to
compare this with the corresponding optimal
sample sizes for rarer diseases. The table also
shows the optimal sample size for the first of two
clinical trials. The sample sizes are strikingly dif-
ferent for common versus uncommon diseases. 

In a decision analysis one can explicitly con-
sider asymmetry in information concerning the
treatment arms under consideration. The alloca-
tion proportions should also be asymmetric. As
above, continue to assume a two-armed trial with
the goal being to effectively treat as many patients
in horizon N as possible. Consider the particular
forms of prior information about the unknown
rates of success that are shown in Figure 33-12.
Suppose the success rate for one of the arms, say
arm 1, has distribution A and that for the other
arm, arm 2, has either distribution A, B or C. 

Consider N = 100 or greater, as indicated in
Table 33-4. The table shows the optimal sam-
ple sizes for each of the arms. As advertised
above, these increase with N in proportion to
the square root of N (approximately). Consider
case N = 1000 and distribution A for both suc-
cess rates. The table indicates that 21 patients
should be assigned to one of the arms and
20 to the other. In view of symmetry, either
arm 1 or arm 2 could get the extra patient.
(The reason these two numbers are not equal is
instructive. Adding an extra patient to arm 2
would never change the optimal arm for the
patients outside the clinical trial. The only
consequence of this patient is to introduce the
possibility of ties in the observed success
rates, in which case both arms would be opti-
mal outside the trial.) Using this assignment,
the resulting success proportion among the
1000 patients in the horizon is 65%. Increas-
ing either or both sample sizes decreases this
success proportion. And decreasing either or
both sample sizes decreases this success pro-
portion. To consider the extremes, both not
running a clinical trial at all and running a trial
entering all 1000 patients have expected suc-
cess proportions of 50%.

For the case distribution A versus B in Table
33-4, arm 2 is more promising than arm 1 and so
it is assigned to more patients in the trial—about
√3 – 1 = 73% more for large N. For distribution A
versus C, the success rate for arm 2 is known to
be 0.5. The success rate for arm 1 could be greater
than 0.5 or less than 0.5. The trial’s purpose
—in addition to treating patients effectively—is
to identify whether the arm 1 success rate is
greater than or less than 0.5. To achieve this pur-
pose it would be a waste to allocate patients to
arm 2 because its success rate is known. Arm 2 is
held in reserve and will be used after the trial
should it turn out that arm 1’s observed success
rate is less than 0.5. (Only rarely is it reasonable
to assume that a treatment’s success rate is
known. As indicated in Chapter 32, patient popu-
lations vary over time and so a treatment’s effect
may similarly vary.)

This section assumes no interim monitoring.
There could be a substantial benefit in success
rate achieved if updating is possible during the
trial. Such updating could be used to modify the
proportions of patients allocated to the two arms
and it could be used to determine when the clin-
ical trial should end. These possibilities and
other related modifications are considered in the
next section. However, the next section is not
explicitly decision-analytic and in particular it
does not address maximizing overall success
proportion in choosing a clinical trial design. 

ADAPTIVE DESIGNS 
OF CLINICAL TRIALS

Chapter 32 addresses the traditional approach to
designing clinical trials, particularly as regards
sample size. The first step in planning a trial from
a Bayesian perspective is to assess the available
evidence regarding the hypotheses and parame-
ters of interest. The designer addresses the possi-
bility of using this information in a prior distribu-
tion or incorporating it in a hierarchical model
along with the results of the trial being planned. 

At the planning stage it is important to con-
sider the possible state of affairs when the trial is
over. One consideration is the set of implications
and consequences of each possible result. Another
is the predictive probability of each possible
result. The previous section presents an approach
in which utilities are assessed for the former and
weighed with respect to the latter. The present sec-
tion deals with designs that are more flexible than
the ones in the previous section. Although the

Table 33-3 Sample Sizes of a Clinical Trial Assuming that the Optimal Sample Size has been Calculated when 
N is One Million and Turns out to be 1000 (for a single trial)

Patient horizon, N 1,000,000 100,000 10,000 1000 100

Single trial 1000 320 100 32 10
sample size
Sample size for 170 78 36 17 8
first of two trials

Sample sizes provided with two-digit accuracy. The relationship between sample sizes within each row is general, but the relationship across

rows (1000 versus 170, for example) applies only for a particular prior distribution of the unknown parameters.



10 SECTION 5  /  Clinical Trials and Outcomes Assessment

designs in this section are not based on an explicit
consideration of utilities, the goals are efficient
learning and effective treatment of patients. For
explicit decision-analytic generalization of some
parts of this section, see Bandit Problems:
Sequential Allocation of Experiments.16

Consider a trial having a particular design.
Calculating the predictive probabilities of the
trial’s results is always possible, even for the
most complicated of designs (although the most
complicated designs require simulations). These
calculations allow for finding a variety of the
design’s attributes, including the probability of
achieving a statistically significant benefit of
one therapy over another, the expected number of
patients in the trial, and the expected number of
patients in the trial who successfully respond to
their assigned treatment. Comparing calcula-
tions for different designs facilitates choosing
one design over another.

Designs of clinical trials are usually static in
the sense that the sample size and any prescrip-
tion for assigning treatment, including for ran-
domization protocols, are fixed in advance.
Results observed during the trial are not used to
guide its course. There are exceptions. Some
Phase II cancer trials have two stages, with stop-
ping after the first stage possible if the results are
not sufficiently promising. And most Phase III
protocols specify interim analyses that deter-
mine whether the trial should be stopped early
for sufficiently strong evidence of a difference
between competing treatment arms. However,
traditional early stopping criteria are very con-
servative and so few trials stop early.

The simplicity of trials with static designs
makes them solid inferential tools. Their sample
sizes tend to be large, at least in comparison with
alternatives to be discussed in this section. And
they usually consider two therapeutic strategies,
or arms, thus enabling straightforward treatment
comparisons. I do not mean that static trials
always give clear answers as to whether one arm
is better than the other, but only that they usually
allow for an unambiguous quantification of the
uncertainty regarding whether one arm is better.

Despite their virtues, static trials result in
slow and unnecessarily costly drug development.

Hundreds of millions of dollars and many years
can be expended in developing a single cancer
drug, one that may not make it to market. For a
company developing a moderate number of
drugs (say 20 or more), this circumstance is tol-
erated because costs are balanced by profits from
other drugs. Smaller companies are at the mercy
of the prevailing attitudes toward drug develop-
ment and risk going belly up.

The tradition of drug development is one at a
time. The number of cancer drugs available for
development is increasing exponentially. It is
inefficient to focus on a single drug while a
gazillion others are sitting on the sidelines wait-
ing to be evaluated. The standard types of errors
in drug development are false positives and false
negatives. These errors apply to drugs actually
being tested. Another kind of error applies to
drugs not under investigation: Every such drug
is a false neutral. A drug not being developed
has no chance of helping anyone. Finite
resources limit the ability of the medical estab-
lishment to develop therapies. But when
resources are limited we should approach their
allocation in a more rational way. And what
makes sense today may well be different from
the ways of the past. 

Pharmaceutical companies and medical
researchers generally must be able to consider
hundreds or thousands of drugs for development
at the same time. Static trials inhibit the simulta-
neous processing of many drugs. And they can-

not efficiently address dose-response questions
when many drugs are under consideration.
Dynamic designs that are integrated with the
drug development process are necessary for rea-
sonable progress in medical research.

The focus of this section is a family of
designs that are dynamic in the sense that obser-
vations made during the trial can affect the sub-
sequent course of the trial. The general class of
designs is adaptive or sequential. The focus is
clinical trials, but the ideas apply at least as
forcefully in the preclinical setting. A main bot-
tleneck of the drug development process occurs
at the level of the preclinical animal toxicity/car-
cinogenicity studies. There are many opportuni-
ties for using adaptive designs in the preclinical
area that will efficiently identify the best drugs to
move forward in trials for humans.

Using an adaptive design means examining
the accumulating data periodically—or even
continually—with the goal of modifying the
trial’s design. These modifications depend on
what the data show about the unknown hypothe-
ses. Among the modifications possible are stop-
ping early, restricting eligibility criteria, expand-
ing accrual to additional sites, extending accrual
beyond the trial’s original sample size if its con-
clusion is still not clear, dropping arms or doses
and adding arms or doses. All of these possibili-
ties are considered in the light of the accumulat-
ing information. Adaptive designs also include
unbalanced randomization where the degree of
imbalance depends on the accumulating data.
For example, arms that give more information
about the hypothesis in question or that are per-
forming better than other arms can be weighted
more heavily.16

Adaptation is not limited to the data accumu-
lating in the trial. Information that is reported
from other ongoing trials can also be used. This
is easier to effect if one takes a Bayesian
approach, possibly using hierarchical modeling
as described in the previous section.

Adaptive designs are increasingly being used
in cancer trials. This is true for trials sponsored
by pharmaceutical companies, and more gener-
ally. For example, a variety of trials at The Uni-
versity of Texas M. D. Anderson Cancer Center
(MDACC) are prospectively adaptive. I will
describe some of them here.

A B

0 0.5 1
r

0 0.5 1
r

C

0 0.5 1
r

Figure 33-12 Three different prior distributions for r, rate of success. Under distribution
A, r is equally likely to be any value between 0 and 1. The density in B is proportional to r,
which means, for example, that r greater than 0.5 is three times as probable as r less than 0.5.
(These two distributions are the same as the two in Figure 33-1, “a.”) Under distribution C,
all the probability is concentrated on r = 0.5 and so in this case the arm’s effectiveness is
assumed to be known.

Table 33-4 Optimal Allocations of Sample Size to Arms 1 and 2 in a Two-armed Clinical Trial plus Success 
Proportion among the N Patients for that Allocation

Patient Prior distributions of rates from Figure 33-12; optimal success proportion

horizon, N 1: A 2: A Prop 1: A 2: B Prop 1: A 2: C Prop

100 6 5 0.63 4 8 0.71 9 0 0.60
1000 21 20 0.65 16 30 0.74 29 0 0.62
10000 70 69 0.66 56 98 0.75 99 0 0.62
Large N √N/2 √N/2 2/3 √N/3 √N 3/4 √N 0 5/8

For each value of N there are three pairings of prior distributions of the arm 1 and arm 2 success rates considered. The optimal asymptotic

(large N) success proportion is the expected value of the maximum of the two success rates, where the expectation is with respect to the

prior distribution. 

Prop = success proportion.
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CONTINUOUS REASSESSMENT METHOD (CRM)
IN PHASE I As indicated in Chapter 32, the
purpose of Phase I cancer trials is to identify the
maximum tolerated dose (MTD). The most com-
monly used Phase I designs are variants of the
so-called “3+3” design. Patients are admitted in
groups of 3. If none of the 3 experiences toxicity
then the dose is increased one level for the next
group of 3. If 2 or 3 of the 3 experience toxicity
then the next lower dose is the MTD. If 1 of the
3 experiences toxicity then 3 more patients are
added at the same dose level. If 2 or more of the
6 patients at that dose experience toxicity then
again the next lower dose is the MTD.17

This design is adaptive, but its adaptation is
very crude. Such a design is likely to assign low
doses and to select an MTD that is ineffective.
Moreover, such a design ignores important infor-
mation that is available in the trial. In particular,
dose assignments are not based on sufficient
statistics.18 An alternative approach uses
Bayesian updating: the continual reassessment
method (CRM) of O’Quigley and colleagues19

Updating takes place assuming a particular
model of the relationship between dose and tox-
icity (such as the logistic function). The CRM
too is adaptive. Each patient is assigned to the
dose having probability of toxicity closest to
some predetermined target value. This is the
Bayesian posterior probability calculated from
the data available up to that point (and so it is
based on sufficient statistics). 

The CRM more effectively finds the MTD
than does the 3+3 design. The CRM is the stan-
dard design used in Phase I trials at MDACC. But
it is rather crude and we are improving it in a num-
ber of ways. One of these ways is based on the fun-
damental principle that ignoring information is
wrong. (A catch, of course, is that taking informa-
tion into account is work, and it can require mod-
eling.) There is some information that accrues
about efficacy in a Phase I trial. This information
is limited, especially regarding the dose-efficacy
relationship. But at a minimum, in proceeding to
Phase II with a particular dose (usually the MTD),
one should use the efficacy information from
those patients in Phase I who were assigned to that
dose. This notion leads to using a Phase I/II design
that addresses safety and efficacy simultaneously,
or the focus turns to efficacy after an initial focus
on toxicity. Such an approach is efficient from the
perspective of both time and patient resources.

A way in which both 3+3 and CRM designs
are crude is the need to pause accrual while wait-
ing for toxicity information.20,21 Such pauses are
inefficient and they cause logistical problems.
Trials should be paused or stopped if there are
safety concerns, not because the design cannot
get out of its own way. In getting information
about toxicity (or efficacy), there is seldom a
magical dose that the next patient must get. All
doses are potentially informative. Rather than
stopping, one should use a design that models
dose-response (toxicity and efficacy) and is able
to assign a next dose even though patients previ-
ously treated are not yet fully evaluable.

Another way in which both 3+3 and CRM
designs are crude is the assumption that toxicity
is dichotomous. An approach that is better—
again because of using all available informa-
tion—would be to account for severity of toxic-
ity. Again, it would be better to consider both
severity of toxicity and efficacy in a Phase I/II
design.22 Assigning utilities to the various possi-
ble health states would lead to weighing these
two conflicting desiderata in a decision analysis.

ADAPTIVE DOSE-FINDING IN PHASE II In many
diseases, the standard Phase II dose-finding
design is to allocate a fixed number of patients to
each of a number of doses in a grid. Such ques-
tions are generally of less interest in cancer
because of the MTD mentality: administer as
much drug as the patient can tolerate. But with
the increasing interest in biological agents, dose
finding for efficacy is becoming important in
cancer research.

After seeing the results of a dose-finding
trial, the investigators usually wish they had
assigned patients in some other fashion. Perhaps
the dose-response curve was shifted more to the
left or right than anticipated. If so, then assign-
ment of the bulk of patients on one end or the
other was wasted. Or perhaps the slope of the
dose-response curve is greater than anticipated
and the response of patients assigned to the flat
regions of the curve would have been more infor-
mative if the doses assigned had been in the
region where the slope is apparently greatest. Or
perhaps results for the early patients made it
clear that the dose-response curve was flat over
the entire range and therefore the trial could have
stopped earlier. Or perhaps the results of the trial
show that the standard deviation of the outcome
of interest is greater or less than anticipated and
so the trial should have been larger or could have
been smaller.

The approach of Berry and colleagues 23 is to
proceed sequentially, analyzing the data as it accu-
mulates—see also Malakoff.5 There are two
stages of the trial, first dose ranging (Phase II) and
then confirmatory (Phase III), if the latter is war-
ranted. The dose-ranging stage continues until a
decision is made that the drug is not sufficiently
effective to pursue future development or that the
optimal dose for the confirmatory Phase III trial is
sufficiently well known. (Switches to Phase III
can be effected seamlessly and without stopping
accrual—see below, and this is so even if the end-
point of interest is delayed, such as time to pro-
gression.) The example trial of Berry and col-
leagues 23 involves a biological neuroprotective
agent for stroke. But the same principles of trial
design apply in cancer. Each entering patient is
assigned the dose (one of 16, including placebo)
that maximizes information about the dose-
response relationship, given the results observed
so far. This dose could be in the region of greatest
apparent slope, or it could be placebo or a high
dose. But future patients are not assigned to doses
in any region where accumulating evidence sug-
gests that the dose-response curve is flat. 

In the dose-ranging stage, neither the number
of patients assigned to any particular dose nor
the total number of patients assigned in this stage
are fixed in advance. The dose-ranging sample
size will be large when the data suggest that the
drug has moderate benefit, when the dose-
response curve is gently sloping, or when the
standard deviation of the responses is moderately
large. It will tend to be small if the drug has sub-
stantial benefit, if the drug has no benefit, if the
dose-response curve rises over a narrow range of
doses, or if the standard deviation of the
responses turns out to be small. (In addition, and
somewhat non-intuitively, the dose-ranging stage
will be small if the standard deviation of
responses is very large. The reason is that a suf-
ficiently large standard deviation means that a
very large sample size would be required to
demonstrate a beneficial drug effect. The
required sample size may be so large that it
would be impossible to study the drug and so the
trial stops in the dose-ranging phase before sub-
stantial resources go down the drain.)

In the stroke trial considered by Berry and
colleagues,23 the ultimate endpoint is improve-
ment in stroke scale from baseline to 13 weeks.
If the accrual rate is large then the benefit of
adaptive assignment can be limited by delays in
obtaining endpoint information. To minimize the
effects of delayed information, each patient’s
stroke scale is assessed weekly between baseline
and week 13. Within-patient measurements are
correlated, with correlations greater if they are
closer together in time. We incorporate a longi-
tudinal model into the analysis of the trial and
carry out Bayesian predictions of ultimate end-
point based on current patient-specific informa-
tion, and we update probability distributions of
treatment effect accordingly.

Adaptive dosing is more effective than is the
standard design at identifying the right dose. And
it usually identifies the right dose with a smaller
sample size than when using fixed dose assign-
ments. Another advantage is that many more
doses can be considered in an adaptive design.
(Even though some doses will be little used and
some might never be used, these cannot be pre-
dicted in advance.) An adaptive design therefore
has some ability for distinguishing responses at
adjacent doses and for estimating nuances of the
dose-response curve.

The circumstances of the stroke trial are sim-
ilar to those in many other types of trials. Find-
ing the right dose is a ubiquitous problem in
pharmaceutical development, and it is seldom
done well or efficiently. The adaptive nature of
the stroke trial would be less advantageous if we
had not exploited early endpoints. Cancer too is
characterized by the availability of information
about a patient’s performance (local control of
the disease, biomarkers, etc.) before reaching the
primary endpoint. Finally, the possibility of
moving seamlessly into Phase III depending on
the Phase II results exists for many types of
drugs. That issue leads naturally to the subject of
the next section.
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SEAMLESS PHASES II AND III The convention
of categorizing drug development into phases is
unfortunate. We proceed from one phase to the
next when we think we know something: the
MTD from Phase I or that a drug’s impact on a
Phase II endpoint will translate into a benefit in
Phase III, and at the Phase II dose. In the
Bayesian approach one never takes a quantity to
be perfectly known. Instead, the Bayesian per-
spective is to carry along uncertainty with what-
ever knowledge is available. Phases of drug
development are arbitrary labels that describe a
process that is—or should be—continuous. 

One of the consequences of partitioning drug
development into phases is that there are delays
between phases. For example, there is a pause
between phases II and III to set up one or more
pivotal studies. As mentioned above in the con-
text of the stroke trial, its design allows for
avoiding such a hiatus. At each time point, say
weekly, the algorithm that guides the conduct of
the trial carries out a decision analysis and rec-
ommends either (1) continue the dose-ranging
stage of the trial, (2) stop the trial for lack of effi-
cacy (inadequate slope of the dose-response
curve or, more accurately, evidence of a positive
dose-response that is insufficient to justify con-
tinuing the trial), or (3) shift into a confirmatory
trial. This shift can be made seamlessly, with no
break in accrual. Indeed, it is even theoretically
possible to effect such a shift in a double-blind
trial without informing the investigators: they
simply continue to randomize doses, but unbe-
knownst to them, the only two being assigned are
the Phase III dose and placebo.

We designed a trial at MDACC24 that
encompasses both phases II and III. If there is a
switch to Phase III, this switch is seamless. The
anticipated effect of the drug is on local control.
We model survival as it depends on local control
and as it depends on treatment. (Though the pos-
sibility is remote, we allow for the experimental
drug to have a beneficial effect on survival that
is not mitigated by local control.) So local con-
trol is a surrogate endpoint in a way similar to
the way early stroke scale assessments are sur-
rogate endpoints in the stroke trial. But the clear
focus is on survival as the main endpoint and the
utility of the surrogate endpoint must be demon-
strated by the results actually observed in the
trial. We exploit any relationships that exist, but
do not assume such relationships. We analyze
the data in the trial frequently and adapt to the
accruing evidence.

The seamless aspect is as follows. Initially,
only MDACC patients are accrued to the trial.
Think of this as Phase II. If the accumulating
data are sufficiently strong in suggesting that the
drug has no effect on local control or survival,
then the trial stops. If the data suggest that the
drug may have an impact on local control and
that this impact translates into a survival benefit,
then the trial will be expanded to include other
centers and the accrual rate will increase accord-
ingly. During such an expansion, patients con-
tinue to accrue at MDACC so that there is no

down time in local accrual while other centers
gear up for joining the trial. This is efficient use
of patient resources because the patients accrued
early at MDACC contribute to the eventual infer-
ences about survival. These patients are the most
informative of all those enrolled because their
follow-up times are the longest.

The trial continues until stopping occurs
because (1) continuing would be futile, judged by
predictive probabilities, (2) the maximum sample
size is reached, or (3) the predictive probability of
eventually achieving statistical significance
becomes sufficiently large. Should the third event
occur, accrual ceases and the pharmaceutical
company prepares a marketing application.

The sample size of a conventional Phase III
trial with the desired operating characteristics is
900. We take this to be the maximum sample size
in the seamless design as well. Actual accrual is
very likely to be much less than this maximum
sample size, and on average it will be about half
as large. On the other hand, incorporating the
same number of interim analyses in a conven-
tional design using a conventional type of stop-
ping boundary allows for only a slight decrease
in average sample size. Under any hypothesis,
null or alternative, the Bayesian design occasion-
ally leads to a relatively large trial (close to
900 patients). However, a pleasant aspect of the
design is that the sample size is large precisely
when a large trial is necessary. Conventional tri-
als may well (and sometimes do!) come to their
predetermined end with an ambiguous conclu-
sion. In a Bayesian approach one may choose to
continue such a trial to resolve the ambiguity,
and this option has substantial utility. (Carrying
this argument to the maximum sample size, there
may be times for which stopping at 900 is ill
advised, but for logistical reasons we specified a
maximum size.)

Reductions in sample size result from two
characteristics of the seamless design described
above. First are the frequent analyses to assess
the predictive probability of eventual statistical
significance. The second is the explicit model-
ing of the possible relationship between local
control and survival. Of the two, the second is
more important. 

A conventional drug development strategy
involves running a Phase II trial that addresses
local control, digesting the results, and if the
results are positive, starting to develop Phase III
trials with survival as the primary endpoint. As
indicated above, in comparison with such a strat-
egy, a seamless approach can greatly reduce
sample size. In addition, a seamless design min-
imizes pauses between phases and so the total
drug development time is greatly shortened.

ADAPTIVE ALLOCATION The adaptive designs
discussed so far are motivated by the desire to
learn efficiently and as rapidly as possible.
Another kind of adaptive design aims to treat
patients in the trial as effectively as possible.
These designs use adaptive allocation in which
patients are more likely to be assigned to thera-

pies that are performing better. In addition to
making clinical trials more attractive to patients
and thereby increasing participation in clinical
trials, such strategies have the important side
benefit of being efficient and so they result in
rapid learning.

More than a dozen trials at MDACC have
been designed and are being conducted using
adaptive allocation. Our standard approach is to
randomize treatment assignment, but we shift the
weights toward better performing arms as the
trial proceeds and the results accumulate. Many
of these trials have more than two arms. The
arms are sometimes distinct therapies, and some-
times they are closely related. An example of the
latter is an MDACC trial involving five doses
(including 0) of a drug (pentostatin). The goal is
to inhibit graft-versus-host-disease (GVHD) in
leukemia patients who are receiving bone mar-
row transplants. The problem is that the drug
may inhibit successful engraftment of the trans-
plant, which is necessary for survival. Such inhi-
bition may be related to dose. We use a combina-
tion endpoint: survival at 100 days free of
GVHD. The conflict between engraftment and
freedom from GVHD means that the dose-
response curve may not be monotone. In partic-
ular, it may increase for small doses and then
decrease. Initially we assign doses in a graduated
fashion, climbing the dose ladder slowly. But as
doses become admissible, we assign patients to
those that have been performing well. 

Consider a patient who qualifies for the trial.
To decide which pentostatin dose to assign we
calculate the current (Bayesian) probabilities
that each admissible dose is better than placebo.
This calculation uses all information from
patients treated to date. We allocate doses ran-
domly, with weights proportional to these proba-
bilities. We consider other allocation algorithms,
including assigning in proportion to powers of
these probabilities. The assignments involve
some degree of randomization, but all patients
are more likely to receive doses that are per-
forming better. Doses that are doing sufficiently
poorly become inadmissible in the sense that their
assignment weight becomes 0. When and if we
learn that the drug is effective, we stop the trial.
When and if we learn that the drug is ineffective,
then again we stop the trial. Patients in the trial
benefit from data collected in the trial. The
explicit goal is to treat patients more effectively,
but in addition we learn efficiently. We evaluate
each design’s frequentist operating characteristics
using Monte Carlo simulation, possibly modify-
ing the parameters of the assignment algorithm to
achieve desired characteristics.

PROCESS OR TRIAL? EVALUATING MANY DRUGS

SIMULTANEOUSLY USING ADAPTIVE ALLOCATION

The greatest need for innovation and the greatest
room for improving drug development is effec-
tively dealing with the enormous numbers of
potential drugs that are available for develop-
ment. The notion of developing drugs one at a
time is part of the pharmaceutical culture. It will
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change. Companies that are able to screen many
drugs simultaneously and do so effectively will
survive and others will not.

Many different drugs should be evaluated in
the same preclinical experiment or collection of
experiments. Information should be updated fre-
quently or even continually. The extent to which
any particular drug is used and the order of drugs
used will depend on the available data. Drugs
that are apparently more promising will move
faster through the preclinical setting. Drugs that
give disappointing data will languish. And the
sample sizes of drugs whose promises and toxic-
ities are not clear will tend to be large so as to
enable resolving uncertainties.

These ideas and imperatives apply as well to
drugs’ clinical development. As an example, at
MDACC we are building the foundation for a
Phase II trial for evaluating drugs that is more a
process than a trial. The idea is an extension of the
adaptive assignment strategies described in the
previous section. We start with a number of treat-
ment arms plus a control—possibly a standard
therapy. We randomize to the arms and learn
about their relative efficacy as the trial proceeds.
Arms that perform better get used more often. An
arm that performs sufficiently poorly gets
dropped. An arm that does well enough graduates
to Phase III, and if it does sufficiently well it
might even replace the control. As more arms
become available, they are added to the mix. 

The result is that better arms move through
quickly and poorer arms get dropped. Patients in
the trial are provided with better treatment (when
the arms are not equally good). Patients outside
the trial get access to better drugs more rapidly.

EXTRAIM ANALYSES

A common circumstance is that a clinical trial
ends without a clear conclusion. For example, a
statistical significance level of 5% in the primary
endpoint may be required for drug registration
and the p-value turns out to be 6%. The regula-
tory agency suggests that the trial was “under-
powered” and that the company should carry out
another trial. It would be much more efficient to
simply increase the sample size in the present
trial. The problem is that the possibility of such
an extension increases the type I error rate. The
principle is identical to that for interim analyses.

The solution is to build into the design the
possibility of continuing the trial depending on
the results, suitably adjusting the significance
levels. In contrast to adjustments for interim anal-
ysis, the adjustments for “extra-im” (extraim)
analyses are reversed, with much of the overall
significance level “spent” at the originally
planned sample size. For example, taking equal
significance levels at each possible termination
point is preferable to O’Brien-Fleming stopping
boundaries because the latter are too conservative
for extraim analyses. Allowing for extending the
trial increases the maximal sample size and also
the average sample size. But a modest increase in
average sample size (such as 20%) comes with a
substantial increase in statistical power (such as

80% increasing to 95%). The reason for this ben-
eficial trade-off is that the trial is extended only
when such an extension is worthwhile. 

The “penalty” in significance level can be
either partially or fully offset by including futil-
ity analyses as part of the design. Namely, the
trial would be stopped for sufficiently negative
results at preset interim time points. The reason
such analyses offset the penalty for extraim anal-
yses is that the null hypothesis is never rejected
when the trial stops for futility. Decreasing the
opportunity for a type I error also decreases the
power of the trial. However, this decrease is usu-
ally quite modest and in any case is more than
compensated by the increase in power due to the
extraim analyses.

The increment in sample size depends on the
available data at the time the decision is made to
continue accrual. It also depends on the number
of possible extensions. In trials I have designed,
I base each extension on predictive power. The
usual definition of power assumes a particular
value of the parameter of interest, say r. Predic-
tive power considers all possible values of r. The
data available at the time of the extraim analysis
plays two roles. First, they count in the final
results of the trial. Second, they are used to update
the (Bayesian) probability distribution of r. Fix
the total sample size n and calculate the power for
detecting each possible value of r. Average this
power with respect to the probability distribution
of r to give predictive power for sample size n.
Extend accrual by the minimum sample size that
gives total sample size having pre-specified pre-
dictive power. If there is no such value of n, then
continuing accrual may be unwise.

There is an aspect of the above development
that may be unrealistic. Namely, it assumes that
endpoints for those patients treated in the trial so
far are available at the time of the extraim analy-
sis. Even if the endpoint is tumor response, there
is a delay in obtaining this information. There is
no need to stop the trial just because some of the
endpoint information is unavailable. Rather,
these data can be predicted along with that from
patients not yet accrued. If there is some early
information (biomarkers, performance status,
etc.) that is correlated with the endpoint of inter-
est then this can be used to inform the prediction.
A special and important case is when the end-
point is time to event. The fact that a patient has
not yet reached an event is useful information in
predicting the time to that event. But if there is
no patient-specific early information, then
patients treated but not yet assessed for response
are treated in the same way as patients not yet
treated. (This set of issues is sufficiently impor-
tant that they deserve being addressed sepa-
rately—see the next section) 

The above process is complicated. But it can
be completely and precisely described. That
means it can be simulated. The simulations can be
carried out under various assumptions about the
parameter of interest. In particular, the false-
positive rate can be calculated. If there is a target
significance level—such as 5%—then the various

inputs into the design (number and type of extraim
analyses, number of type of futility analyses, etc.)
can be varied until achieving that target. An
advantage of simulations is that each iteration pro-
vides a fully accrued trial. So it is possible to
check any characteristics of interest regarding the
trial’s design by calculating the proportion of the
trials that have that characteristic. Characteristics
of interest include power, actual sample size and
the probability of extending accrual. 

AUXILIARY VARIABLES, BIOMARKERS,
AND BIOLOGICAL AGENTS 

The adaptive designs considered in the previous
section are based on information on the primary
endpoint that accrues during the trial. If the pri-
mary endpoint is delayed and accrual is suffi-
ciently fast then adaptive methods are of limited
value. This section addresses statistical proce-
dures for designs that exploit information on
other than the primary endpoint that accrues dur-
ing the trial.

USING AUXILIARY VARIABLES Information that
accrues during a trial has a broad interpretation.
Suppose that the endpoint is time to progression
and a patient has not yet progressed. That is
information, and it can be used to update the dis-
tributions of whatever parameters are involved. 

In addition, information accrues about each
patient’s circumstances and each patient’s condi-
tion. Whether the patient’s tumor has responded
is information, and this is so even if response is
not the endpoint of interest. Moreover, time to
tumor response can be informative. A patient’s
performance status can change over time (or
not!) and such information is important and the
various possibilities can be used prospectively in
designing a trial. There are many such variables
that might be considered. They are auxiliary
variables since they may contain information
about the primary endpoint even though they are
not themselves endpoints. 

The critical issue is how to take advantage of
the wealth of information that accrues in a trial.
The answer is modeling. A model can relate the
early information to the primary endpoint.

There are several benefits of modeling. One
benefit was considered in the sections on adap-
tive dose-finding and on seamless phases. Wait-
ing for long-term endpoints may rule out the
ability to modify the design of a clinical trial dur-
ing its course. Using auxiliary variables can
make adaptation possible. Another benefit of
modeling is that the relationship between the pri-
mary endpoint and auxiliary variables may allow
for announcing trial results earlier or for getting
earlier regulatory approval of an experimental
drug. For example, suppose that survival is the
primary endpoint and that modeling its relation-
ship with response was considered explicitly in
the design of the trial. Accrual to the trial has
ended and all patients have been treated. There is
insufficient information to conclude drug bene-
fit on the basis of survival alone. But the drug
has a positive impact on tumor response. And it
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turns out that in both drug and control groups
there is a clear relationship between response
and survival. A model can utilize this informa-
tion to conclude a survival benefit. 

Chapter 32 addresses surrogate endpoints.
An auxiliary variable may or may not be a surro-
gate endpoint. This distinction is critically
important. In the above example, tumor response
is an auxiliary variable and it is not assumed to
be a surrogate for survival. The focus of the
definitive analysis is the primary endpoint and
not the auxiliary variable. The conclusion of the
trial is that the drug improves survival or not.

A model incorporating early information can
be arbitrarily complicated and, in particular, it
can contain all the variables discussed above.
However, one should tiptoe into model develop-
ment and consider one auxiliary variable at a
time. Especially important will be to consider the
possibility that any relationship between the aux-
iliary variable and the primary endpoint depends
on treatment. So treatment must be explicitly
considered in the equation. Should it happen that
there is an interaction between the auxiliary vari-
able and treatment—such as that tumor response
is related to survival in the control group but not
in the treatment group—then the model automat-
ically discounts the auxiliary variable and relies
on survival data alone.

Little is lost by modeling, and much can be
gained, as indicated in the seamless Phase II/III
trial design presented earlier. Again, the gains
and any losses can be assessed by simulation.

A special type of auxiliary variable is a
biomarker. Models relating to primary endpoints
can be based on longitudinal models that incor-
porate biomarker information that accrues over
time. An example of a longitudinal model is
described in Berry and colleagues,23 which is set
in the context of a stroke trial. 

DEVELOPING BIOLOGICAL AGENTS Biological
agents present special drug development prob-
lems. Historically, oncology drug development
has dealt primarily with cytotoxic agents. Drug
activity was judged by assessing tumor growth.
An effective biological agent may well have an
impact that slows tumor growth rather than
killing the tumor. Or it might even allow tumor
growth but halt tumor spread.

A possible strategy is to include stable dis-
ease with partial and complete tumor response

as the Phase II endpoint. Another is to use time-
to-progression as the Phase II endpoint. The lat-
ter has the drawback that sample sizes and
length to trial may increase, but not as much as
when skipping Phase II entirely. Both strategies
may succeed. And both have the advantage that
they do not involve a paradigm shift for the
oncology research community. But there are
better options.

There are two types of biological agents,
those with and those without measurable targets
(such as specific oncoproteins). I distinguish
between these as follows: If there is a target and
the drug does not affect the target then the drug
cannot be effective. Circumstances are usually
more complicated and affecting a particular tar-
get may not be a drug’s only mechanism. In such
a case the drug is in essence a generic biological
agent that might affect cancer through a variety
of pathways.

Another reason one might view a targeted
agent to be generic is when assessing expression
of the target is subject to error. An example is
trastuzumab, which may well benefit tumors that
have normal levels of HER-2/neu because labo-
ratory tests are not perfect in assessing expres-
sion levels.25,26

Whether or not a biological agent has a mea-
surable target, the section “Using Auxiliary Vari-
ables” applies. If there is a target, think of it as a
biomarker and develop a longitudinal model to
relate its level with the primary endpoint, usually
time to progression or overall survival. If there is
no measurable target then identify auxiliary vari-
ables (biological and otherwise) that may be cor-
related with the primary endpoint. Model the
possibility of a relationship should one exist.
Again, the goal is to learn early and quickly as to
whether the drug has a benefit, and by which
route that benefit travels.

ACKNOWLEDGEMENTS:

The Cancer and Leukemia Group B gave per-
mission for using data from CALGB 8541. Peter
Thall, Jeff Morris and the editors made helpful
suggestions. 

REFERENCES:

1. Berry DA. Statistics: a Bayesian perspective.
Belmont(CA): Duxbury Press; 1996.

2. Berry DA. A case for Bayesianism in clinical trials (with
discussion). Stat Med 1993;12:1377–404.

3. Berry DA, Stangl DK. Bayesian biostatistics. New York:
Marcel Dekker; 1996.

4. Berger JO, Berry DA. Statistical analysis and the illusion of
objectivity. Am Sci 1988;76:159–65.

5. Malakoff D. Bayes offers a “new” way to make sense of
numbers. Science 1999;286:1460–4.

6. Hawking SW. A brief history of time: from the big bang to
black holes. New York: Bantam Books; 1988.

7. DuMouchel W. Bayesian Metaanalysis. In: Berry DA, edi-
tor. Statistical methodology in the pharmaceutical sci-
ences. New York: Marcel Dekker; 1989. p. 509–29. 

8. Thall PF, Wathen JK, Bekele BN, et al. Hierarchical
Bayesian approaches to phase II trials in diseases with
multiple subtypes. 2003. [In press]

9. Budman DR, Berry DA, Cirrincione CT, et al. Dose and
dose intensity as determinants of outcome in the adju-
vant treatment of breast cancer. J Natl Cancer Inst
1998;90:1205–11.

10. Thor A, Berry DA, Budman D, et al. erbB-2, p53 and effi-
cacy of adjuvant therapy in lymph node-positive breast
cancer. J Natl Cancer Inst 1998;90:1346–60.

11. Sox HC, Blatt MA, Higgins MC, Marton KI. Medical deci-
sion making. Boston: Butterworth and Heinemann;
1988.

12. Clemen RT. Making hard decisions. Boston: PWS-Kent;
1991.

13. Berry DA. Decision analysis and Bayesian methods in clin-
ical trials. In: Thall PF, editor. Recent advances in clini-
cal trial design and analysis. New York: Kluwer Press;
1995. p. 125–54.

14. Lewis RJ, Berry DA. Decision theory. In: Armitage P,
Colton T, editors. Encyclopedia of Biostatistics. Vol. 2.
New York: John Wiley & Sons; 1998. p. 1109–18.

15. Cheng Y, Su F, Berry DA. Choosing sample size for a clin-
ical trial using decision analysis. 2002. [In press].

16. Berry DA, Fristedt B. Bandit problems: sequential alloca-
tion of experiments. London: Chapman-Hall; 1985.

17. Dixon WJ. The up-and down method for small samples. J
Am Stat Assoc 1965;60:967–78.

18. Berry DA, Lindgren BW. Statistics: theory and methods.
2nd ed. Belmont(CA): Duxbury Press; 1996.

19. O’Quigley J, Pepe M, Fisher L. Continual reassessment
method: a practical design for phase I clinical trials in
cancer. Biometrics 1990;52:673–84.

20. Thall PF, Lee JJ, Tseng C-H, Estey E. Accrual strategies for
phase I trials with delayed patient outcome. Stat Med
1999;18:1155–69.

21. Cheung YK, Chappell R. Sequential designs for phase I
clinical trials with late-onset toxicities. Biometrics
2000;56:1177–82.

22. Thall PF, Russell KT. A strategy for dose-finding and
safety monitoring based on efficacy and adverse out-
comes in phase I/II clinical trials. Biometrics
1998;54:251–64.

23. Berry DA, Mueller P, Grieve AP, et al. Adaptive Bayesian
designs for dose-ranging drug trials. In: Gatsonis C,
Carlin B, Carriquiry A, editors. Case studies in
Bayesian statistics V. New York: Springer-Verlag; 2001.
p. 99–181. 

24. Inoue LYT, Thall P, Berry DA. Seamlessly expanding a ran-
domized phase II trial to phase III. 2002. [In press].

25. Paik S, Bryant J, Tan-Chiu E, et al. Real-world perfor-
mance of HER2 testing—National Surgical Adjuvant
Breast and Bowel Project experience. J Natl Cancer Inst
2002;94:852–4.

26. Roche PC, Suman VJ, Jenkins RB, et al. Concordance
between local and central laboratory HER2 testing in
the Breast Intergroup Trial N9831. J Natl Cancer Inst
2002;94:855–7.

NOTES FROM BONNIE

Please have the equations checked carefully.


