
Statistical thinking has had a central role in raising the 
scientific standards of clinical research over the last two 
centuries, especially during the past 50 years. A major 
reason has been the appreciation of statistical infer-
ence by drug- and medical-device-regulatory agencies. 
Traditional frequentist statistics has had the dominant, 
and often exclusive, role in this scientific renaissance. 
The greatest virtue of the traditional approach may 
be its extreme rigour and narrowness of focus to the 
experiment at hand, but a side effect of this virtue is 
inflexibility, which in turn limits innovation in the 
design and analysis of clinical trials. Because of this, 
clinical trials tend to be overly large, which increases 
the cost of developing new therapeutic approaches, and 
some patients are unnecessarily exposed to inferior 
experimental therapies.

Owing to such issues, there is increasing interest 
in Bayesian methods in medical research. Advances in 
computational techniques and power are also facilitat-
ing the application of these methods (BOX 1). More than 
100 ongoing clinical trials at the University of Texas 
M. D. Anderson alone have been designed or are 
being monitored from the Bayesian perspective. And 
of recent medical device approvals by the Center for 
Devices and Radiological Health of the US FDA, 
~10% are based on Bayesian designs and analyses, as 
compared with none 10 years ago. Furthermore, at 
least one drug (Pravigard Pac; Bristol-Myers Squibb) 
was approved by the FDA on the basis of Bayesian 
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Frequentist
An approach to statistical 
inference that is an inverse of 
the Bayesian approach. The 
focus is on the probability of 
results of a trial — usually 
including the observed data — 
assuming that a particular 
hypothesis is true. For example, 
a frequentist P-value is the 
probability of observing results 
as extreme as or more extreme 
than the observed results 
assuming that the null 
hypothesis is true.

analyses of efficacy (BOX 2). And in May 2004, the 
FDA co-sponsored a workshop to address the role of 
Bayesian approaches in drug and medical device devel-
opment, ‘Can Bayesian Approaches to Studying New 
Treatments Improve Regulatory Decision-Making?’ 
(The video/audio presentations are available as 
webcasts; see Further information).

After setting the context of the Bayesian approach 
by describing the frequentist perspective and relating 
the two approaches, this article discusses the Bayesian 
approach to the design and analysis of clinical trials, and 
to drug and medical device development more generally. 
The goal is to improve drug and medical device devel-
opment, in terms of costs and the effective treatment of 
patients, both those in and those outside of clinical trials, 
and the Bayesian approach provides a better perspective, 
and a more efficient methodology, for accomplishing this 
goal. It should be emphasized though that I want to pre-
serve the high scientific standards wrought by the hard 
and effective work of statisticians and other scientifically 
oriented clinical researchers during the past 50 years 
(indeed, the Bayesian approach is more closely in line 
with the scientific method1).

Statistical inference
Statistical inferences are based on mathematical models 
of experiments, including clinical trials. Each model 
corresponds to a ‘state of nature’, the underlying pro-
cess that produces the experimental results. Candidate 

Bayesian clinical trials
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Abstract | Bayesian statistical methods are being used increasingly in clinical research 
because the Bayesian approach is ideally suited to adapting to information that accrues 
during a trial, potentially allowing for smaller more informative trials and for patients to 
receive better treatment. Accumulating results can be assessed at any time, including 
continually, with the possibility of modifying the design of the trial, for example, by slowing 
(or stopping) or expanding accrual, imbalancing randomization to favour better-performing 
therapies, dropping or adding treatment arms, and changing the trial population to focus on 
patient subsets that are responding better to the experimental therapies. Bayesian analyses 
use available patient-outcome information, including biomarkers that accumulating data 
indicate might be related to clinical outcome. They also allow for the use of historical 
information and for synthesizing results of relevant trials. Here, I explain the rationale 
underlying Bayesian clinical trials, and discuss the potential of such trials to improve the 
effectiveness of drug development.
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Successes

p = 0.35

p = 0.70

0 1 2 3 4 5 6 7 8 9 10

0.013 0.072 0.176 0.252 0.238 0.154 0.069 0.021 0.004 0.001 0.000

0.000 0.000 0.001 0.009 0.037 0.103 0.200 0.267 0.233 0.121 0.028

Bayesian
An approach to statistical 
inference that uses Bayes rule. 
The focus is on the probability 
that a hypothesis is true given 
the available evidence.

Parameter
A population characteristic, 
such as the tumour-response 
rate when patients are treated 
with a particular therapy. 
Parameters serve to index the 
possible distributions of trial 
results. Parameters can never 
be known precisely because 
populations can never be fully 
assessed. Statistics are 
analogous to parameters but 
apply for samples from a 
population and so statistics are 
known when the sample 
becomes available. Statistics 
are commonly used to 
estimate parameters, such as 
when a response rate from a 
clinical trial is used to estimate 
the response rate of all 
patients having the disease in 
question.

Null hypothesis
An underlying state of nature 
in which there is ‘no difference’ 
among two or more treatments 
or interventions. A hypothesis 
is a specific value of a 
parameter. So a null hypothesis 
is when the parameter is an 
indicator of treatment effect 
and the value specified 
corresponds to no effect.

Figure 1 | Probabilities for a hypothetical clinical trial.

Box 1 | Computational techniques for Bayesian analysis

One spur for the increased use of Bayesian methods in clinical research has been the 
improvement of computational techniques and the widespread availability of high-
speed computers. Bayesian methods that have always seemed right and proper could 
not be carried out because of computational limitations, but this is no longer the case. 
With the availability of modern computational tools, essentially any Bayesian design or 
analysis can be constructed and validated. However, Bayesian software is not nearly as 
refined or as widely available as frequentist software. It is not difficult for statisticians to 
write their own Bayesian computer routines, but it is time-consuming. And the programs 
will require validation. An excellent set of programs called WinBUGS (Windows version 
of Bayesian inference Using Gibbs Sampling) is available online (see The BUGS Project in 
Further information). Moreover, SAS has some (mainly high-level) Bayesian macros and 
plans for incorporating additional Bayesian applications. However, available Bayesian 
software is limited.

models are indexed by a number called a parameter. 
A natural parameter for an experiment that produces 
either successes (such as treatment responses) or fail-
ures is the proportion, p, of successes in some greater 
population of experimental units. The population is 
not fully observable and so the parameter can never 
be known with certainty. Observation is restricted to 
a sample from the population. This sample is gener-
ated by an experimental process. For example, a sample 
might be SSFSSFSSSF, consisting of seven successes 
and three failures. A statistical inference is a statement 
about the unknown value of p based on the sample, and 
in this example the sample proportion 7/10 might be 
adopted as an estimate of p.

Frequentist approach: the basics
When I use the term ‘frequentist’ I mean the Neyman–
Pearson approach2 that dominated biostatistics in the 
latter half of the twentieth century. In this approach, 
parameters are regarded as fixed and not subject to 
probability distributions. Probabilities are associated with 
experimental observations and can be calculated only by 
assuming fixed values of the various parameters. In our 
example, frequentists calculate the probability of observ-
ing data SSFSSFSSSF for values of p that are of interest. 
They also calculate the probabilities of observing other 
possible but unobserved results of the experiment for 
these same values of p. The set of ‘other possible results’ 
depends on the experimental design. For example, if 
the design called for making exactly 10 observations 
then there are 11 possible outcomes, one for each of 0, 
1, 2, …, 10 successes, including 7, the outcome actually 
observed. Another possible experimental design is to 
make observations until obtaining the third failure. For 
such a design there are an infinite number of possible 
results, corresponding to 0, 1, 2, … experimental units, 
including 10, the actual observation.

Suppose that an experimental treatment is being 
used in a disease for which the historical success rate 
for standard treatment was 35%. Consider the first of 
the above two designs, the one that calls for treating 
exactly 10 patients. An important value of p is 0.35, 
called the null hypothesis. Probabilities of the possible 
results assuming p = 0.35 are shown in FIG. 1.

So when p = 0.35, the probability of the actual 
observation (7 successes) is 0.021. The conventional 
frequentist approach is to add in the probabilities of 
more extreme results — in this case 8, 9 or 10 successes 
— giving 0.026. This sum is called the significance level, 
or more briefly, the P-value. (P-values are usually made 
two-sided by including probabilities in the opposite 
tail of the distribution for observations with probabili-
ties smaller than for the actual observation; including 
0 successes as evidence against p = 0.35 would give a 
two-sided P-value of 0.039. Sometimes an approximate 
two-sided P-value is calculated by doubling the one-
sided P-value.) The P-value is a frequentist measure of 
evidence against the null hypothesis that p = 0.35, with 
smaller P-values meaning stronger evidence against the 
null hypothesis. Conventionally, the results are called 
statistically significant if the P-value is less than 0.05, as 
in this example.

Had the design of the trial been other than taking 
exactly 10 observations, then the P-value for these data 
would be different as well. For example, if the design was to 
continue the trial until obtaining the third F and the results 
were SSFSSFSSSF (as before) then the P-value would have 
been 0.004, an order of magnitude smaller than the first 
P-value. So the evidence is now stronger that the success 
rate on the experimental treatment is greater than the his-
torical rate, even though the results of the experiment are 
identical. This essential tie between trial design (and the 
intentions of the investigator) and consequent inferences 
characterizes the frequentist approach and exemplifies its 
inflexibility (as demonstrated below, Bayesian conclusions 
are the same for both designs). For example, investigators 
cannot change the design of the trial in mid-course for 
otherwise no frequentist inferences are possible. And 
if an investigator fails to specify a trial’s stopping rule in 
advance (or fails to adhere to what is specified), then again 
no frequentist conclusion is possible, even if the trial is 
conducted with the utmost integrity and a conscientious 
desire to learn.

Bayesian approach: the basics
The defining characteristic of any statistical approach 
is how it deals with uncertainty. Unlike the frequen-
tist approach, in the Bayesian approach all uncer-
tainty is measured by probability. Anything that is 
unknown has a probability distribution. Everything 
that is known is taken as given and all probabilities 
are calculated conditionally on known values. In the 
example, because p is unknown, it has a probability dis-
tribution. This distribution can be used for calculating 
such quantities as the probability that p is equal to 0.35 
or greater than 0.50 and so on. If experimental results are 
unknown — such as before the experiment — then they 
too have probabilities. However, once the results of an 
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Placebo
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Pravastatin

Sum

Combo

Comparison

Probabilities that the combination is better than either individual drug and also 
of synergism

Combo best
Synergism

Year 1
0.968
0.763

Year 2
0.993
0.877

Year 3
0.999
0.954

Year 4
0.999
0.958

Year 5
0.999
0.933

experiment become known, then they are taken as given 
and no longer subject to probabilities. In the example, 
probabilities regarding p are calculated conditionally on 
having observed 7 successes and 3 failures.

The mathematics of the Bayesian approach are quite 
simple and have their roots in Bayes rule, which I will 
describe next.

Bayes rule. An example use of Bayes rule that will be 
familiar to some readers is in the context of a diagnos-
tic test for a disease. Suppose a test result is positive 
(+). Of interest is the probability that the patient has 
the disease in question (dis) given the results of the 
test, written Pr(dis|+). This is called the test’s ‘positive 
predictive value.’ It is also called a posterior probability 
— ‘after’ the test. This probability cannot usually be found 
directly. It is related to standard characteristics of the test 
called sensitivity (sens), Pr(+|dis), and specificity (spec), 
Pr(–|not_dis). Both quantities have the test result on the 
opposite side of the vertical bar from the posterior prob-
ability. This inversion is a clear indication that Bayes rule 
applies. Indeed, Bayes rule (Equation 1) is sometimes 
called the rule of inverse probabilities1:

 Pr (dis|+) = sens × prev
Pr(+)  (1)

where prev is the prevalence of the disease. The denomi-
nator Pr(+) can be expanded as shown in Equation 2:

 Pr (+) = sens × prev + (1 – spec) × (1 – prev)  (2)

Suppose that the sensitivity of the test is 80% and 
its specificity is 90%. And suppose that on the basis of 
a patient’s characteristics the probability of disease is 
prev = 15%. Then Pr(dis|+) is calculated as shown in 
Equation 3:

 Pr (dis|+) = = 0.5850.80 × 0.15
(0.80 × 0.15 + 0.10 × 0.85)

 (3)

The same type of Bayesian calculation applies in 
any experimental setting. The results of experiments 
are used to update probabilities of parameters. Just as 
the diagnostic setting requires probabilities of results 
assuming both disease and no disease, no Bayesian 
calculation can be made on the basis of probabilities 
of observed results for a single value of a parameter. In 
addition, Bayesian calculations require analogues of dis-
ease prevalence: prior probabilities of parameters (see 
BOX 3 for discussion of prior distributions).

In the example trial, consider two possible values 
of p: 0.35 and 0.70. FIGURE 1 shows the probabilities 
of the various possible results for these two values of 
p.  But now, in contrast to the frequentist approach, 
only the probabilities of the observed results matter. 
(The unused probabilities are shown in lighter type in 
FIG. 1.) The probabilities of 7 successes in FIG. 1 are the 
analogues of sensitivity and specificity. If, a priori, the 
two possible values of p are equally likely: Pr(p=0.35) 
= Pr(p=0.70) = 0.50, then the posterior probability of 
0.35 is the ratio 0.021/(0.021+0.267) = 0.073, which 
compares with the prior probability of 0.50.

Box 2 | Bayesian analysis in regulatory decision-making: Pravigard Pac  

In June 2003, the Center for Drugs and Experimental Research of the US FDA 
approved Pravigard Pac (Bristol-Myers Squibb) based on Bayesian analyses of 
efficacy that Scott Berry and I had carried out. Pravigard is a combination of 
pravastatin (Pravachol; Bristol-Myers Squibb), a cholesterol-lowering drug, with 
aspirin. The FDA had approved these two agents previously for the secondary 
prevention of cardiovascular events. In this review, I consider the occurrence of any 
myocardial infarction, whether fatal or not. We used the results of five secondary 
prevention trials in which pravastatin had been randomized and aspirin use had 
been recorded but not randomized. The Bayesian approach is ideally suited for 
synthesizing information from multiple heterogeneous sources. In addition, its focus 
on probabilities of hypotheses for existing data makes it ideal for retrospective 
analyses.

The FDA’s approval was based on the posterior probability that the combination is more 
effective than either agent alone. We also provided the posterior probability that the 
combination is synergistic in the sense that the effect of the combination is greater than 
the sum of the effects of the separate agents.

Because aspirin use was not randomized it was important to adjust for baseline 
covariates. We adjusted for age, gender, low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol, triglyceride level, systolic and diastolic blood 
pressures, previous cardiac event and smoking status. We also considered the 
possibility of different treatment effects in the different trials (using a hierarchical 
model). An important concern was the attitude of some experts that aspirin was 
effective in the immediate post-event setting but that its effect might dissipate over 
time. Conversely, lowering cholesterol with pravastatin was thought by some to be less 
important in the acute setting but more important in the longer term. So the 
combination might not be necessary but instead aspirin could be taken early and later 
replaced by a statin. To address this possibility, we modelled the different treatment 
hazards over time, out to 5 years.

The accompanying figure shows the posterior means of the cumulative event rates 
for the four treatments and also for the ‘Sum’ of the two agents individually. The 
Bayesian approach allows for calculating the posterior probability of various treatment 
comparisons. The table gives the posterior probabilities that the combination is better 
than either agent separately (‘Combo best’) and that they are synergistic: ‘Combo’ 
better than ‘Sum’.

For a detailed description of the study and statistical modelling see REFS 20,21.
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Stopping rule
Prespecified conditions that 
indicate what interim results 
would lead to stopping the 
trial. Possible decisions are to 
stop the trial’s accrual of new 
patients or to announce the 
results of the trial. Even though 
a trial’s accrual is complete 
and all patients have been 
treated, the trial’s DSMB can 
keep the trial’s results under 
wraps when so indicated by 
the stopping rule.

Figure 2 | Sequence of probability distributions for success rate p corresponding to data SSFSSFSSSF. The prior 
or initial distribution of p is in the upper-left corner. The distribution of p is updated with each new observation. The 
sequence in time proceeds from left to right and then down to the next row. Each S shifts the distribution to the right 
(larger values of p being therefore more likely) and each F shifts the distribution to the left. Shifts in distribution have a 
greater impact early in the trial and are less noticeable as the distribution becomes more concentrated. The panel 
labelled ‘Final’ shows the posterior (end of trial) distribution. The panel in the bottom-right corner shows the two 
possibilities for the distribution of p should a new patient, the eleventh one in all, enter the trial. That additional 
patient’s result would be either success (purple curve) or failure (blue curve). As described in the text, the Bayesian 
(predictive) probability that the eleventh observation will be a success given the results of the first ten patients is 
(7+1)/(10+2) = 0.67 and the remaining 0.33 probability is for failure.

More realistically, p could be any value between 0 
and 1. The distribution in the upper-left corner of FIG. 2 
is an example of a distribution that is usually more 
realistic than one concentrated on just two possible 
values of p. For this flat (so-called ‘non-informative’) 
distribution, all intervals of p between 0 and 1 have 
probabilities equal to their widths. Bayes rule applies 
to update the distribution of p with each observation 
(although updating can take place as well for batches 
of observations, with the same result). Calculations 
are slightly more complicated than in the earlier set-
ting1 and are not shown. The subsequent panels in 
FIG. 2 show the updating process, moving from left to 

right. The relevant aspect of FIG. 2 is not the particular 
distributions, but that such updating is possible and 
that it is natural in the Bayesian approach. Continuous 
updating as information accrues distinguishes the 
Bayesian approach from frequentist approaches and 
leads to flexibility in conducting clinical trials and 
other experiments.

All Bayesian inferences are based on the current dis-
tribution of the unknown parameters and can be made 
at any time. After the tenth patient in the example, this 
distribution is the one labelled ‘Final’ in FIG. 2. An 
example calculation is the posterior probability that the 
experimental therapy does not improve the historical 
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Bayes rule
Mathematical theorem of 
inverse probabilities. Used to 
relate the probability of a 
hypothesis given experimental 
evidence to the probability of 
the experimental evidence 
given the hypothesis.

Trastuzumab
An anti-HER2/neu antibody 
that is approved for the 
treatment of HER2-positive 
metastatic breast cancer.

Interim analysis
An analysis of trial results that 
takes place before the final 
analysis. A trial design can 
include a single interim 
analysis, at half the planned 
number of events, say, or more 
than 10 interim analyses. 
Usually, the focus of an interim 
analysis is efficacy, with safety 
issues addressed throughout 
a trial without specifically 
calling them ‘interim analyses.’ 
Consequences of interim 
analyses are modifications of 
the future course of the trial, 
usually stopping the trial. In 
most trials, DSMBs oversee 
the interim analyses and make 
recommendations to the 
sponsor concerning whether 
a trial modification is 
appropriate.

Data and Safety 
Monitoring Board
(DSMB). Also known as Data 
Monitoring Committee, this is 
a panel of clinicians, 
statisticians, community 
members and possibly other 
experts that is charged with 
ensuring the safety of the trial 
participants and also with 
protecting their contributions 
to clinical research by 
preserving the scientific 
integrity of the trial. Members 
are independent from all other 
aspects of the trial and from 
the trial’s sponsoring agencies 
or companies.

success rate. This probability is 0.014, the area under 
the curve to the left of 0.35. After observing the first 
three patients’ results, SSF, probabilities are calculated 
on the basis of the distribution in the upper-right cor-
ner. At that time the probability that the experimental 
therapy was not an improvement was 0.127.

Numerically, 0.014 is not very different from the 
P-values calculated earlier. But the two measures have 
very different interpretations. The frequentist P-value 
is difficult to understand (and even to say: ‘the proba-
bility of observing a result as or more extreme than that 
observed assuming that the treatment is ineffective’) 
whereas the Bayesian posterior probability is directly 
interpretable as the probability that the therapy is inef-
fective. Another difference is in the assumptions made. 
The P-value depends on the design of the trial and the 
intentions of the investigator, whereas the posterior 
probability depends on the prior distribution (BOX 3). 
For example, we saw that having equal probabilities 
on p = 0.35 and 0.70 gave a posterior probability of 
0.073 that the therapy was not an improvement over 
the historical success rate. On the other hand, if the 
experimental therapy is a member of a class of drugs 
that all have a 35% success rate then the prior distribu-
tion may be concentrated near p = 0.35 and the pos-
terior probability of p ≤ 0.35 may be moderately large 
for the indicated data. In this case, it would take more 
than 10 observations with a 70% observed success rate 
to be persuasive that the drug is more effective than 
others in its class.

Had the trial been stopped before the tenth observa-
tion, or if an interim inference had been made at some 
time before the tenth observation, then the appropriate 
distribution is the corresponding one in FIG. 2. This 
aspect of the Bayesian approach is anathema in a fre-
quentist perspective. For example, no P-value can be 
found after only three observations, say, because ‘more 
extreme results’ after three observations have not been 
identified and so their probability cannot be calcu-
lated. This distinction between the two approaches has 
received much attention in the literature3–5.

Predictive probabilities and trial design
The Bayesian updating process has profound impli-
cations for trial design. Perhaps its most useful con-
sequence is the ability to quantify what is going to 
happen in a trial from any point on (including from 
the start of the trial), given the currently available 
results. Future results cannot be predicted with cer-
tainty, of course, but the Bayesian approach allows for 
assessing the future with the appropriate amount of 
uncertainty.

The simplest continuation to consider is adding one 
more patient. In our example trial, will the treatment 
be successful or not for the next (eleventh) patient? 
There are two sources of uncertainty. First, even if p 
were precisely known, the observation cannot be pre-
dicted perfectly because there is a chance (p) that it 
will be a success and a complementary chance that it 
will be a failure. The other source of uncertainty is that 
p is itself not known precisely. It too has a probability 

distribution, the one shown in the panel labelled ‘Final’ 
in FIG. 2. Calculating the probability that the next obser-
vation will be a success involves combining these two 
sources of uncertainty. The resulting probability and its 
calculation have a long history. The formula is known 
as ‘Laplace’s rule of succession’: the number of successes 
plus 1 divided by the number of observations plus 2, or 
(7+1)/(10+2) = 2/3. This formula, which applies only 
for the flat prior distribution (BOX 3) shown in FIG. 2, 
also gives the current mean of the distribution of p1.

The panel in the bottom-right corner of FIG. 2 
shows the two candidate distributions for p after an 
eleventh patient’s result is observed. The probability 
that it becomes the pink curve (success) is 2/3 and the 
probability it becomes the blue curve (failure) is 1/3.

More generally, the predictive probabilities of the 
final results of any trial can be found for any design. 
These probabilities are crucial in deciding which 
course a trial should take. They are also crucial at 
a trial’s planning stage in assessing the value of any 
particular design. Each possible outcome of the trial 
has consequences and associated utilities, including 
costs6. These can be weighted by each outcome’s prob-
ability to give an overall utility of the trial. Various 
candidate designs can be compared on the basis of 
their utilities.

Bayesian predictive probabilities are helpful in 
monitoring clinical trials. An example is a Phase II 
neoadjuvant HER2/neu-positive breast cancer trial 
conducted at M. D. Anderson Cancer Center7. Target 
accrual was 164 patients randomized to two treatment 
arms, chemotherapy with and without trastuzumab 
(Herceptin; Genentech). The primary endpoint was 
pathological complete response (pCR) of the tumour. 
Accrual was slower than expected, averaging about 
1.5 patients per month. The trial was designed from 
a frequentist perspective and the protocol specified 
no interim analyses. The institution’s Data and Safety 
Monitoring Board (DSMB) assessed the available results 
when 34 patients had data available for assessing 
pCR. The results were consistent with conclusions 
from much larger trials in metastatic breast cancer: 
the trastuzumab arm showed a dramatic improve-
ment: 4 of 16 control patients (25%) and 12 of 18 
trastuzumab patients (67%) experienced a pCR. The 
DSMB requested the Bayesian predictive probability 
of (standard frequentist) statistical significance when 
164 patients had been treated. This probability is 95%. 
Armed with such compelling evidence regarding the 
trial’s eventual conclusion, and in view of the question-
able ethics of continuing to randomize patients in this 
Phase II trial, the DSMB overrode the protocol and 
stopped the trial. This override shows that Bayesian 
analysis can be legitimately used in conjunction with 
a frequentist design.

Choosing sample size using decision analysis
Some Bayesian and frequentist approaches to choosing 
the sample size of a clinical trial give the same answer8. 
But fully exploiting the Bayesian approach’s ability to 
consider the trial’s consequences can give very different 
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sample sizes. This is so even when the number of patients 
must be specified in advance and cannot depend on the 
results of the trial.

Suppose the goal is to treat patients as effectively 
as possible — all patients, those in the trial as well as 
those who come later and who will benefit from the 
results of the trial. The prevalence of the disease or 
condition in question should be considered explicitly. 
With a goal of treating as many patients as effectively 
as possible, clinical trials should be larger for condi-
tions that affect millions of people than for those that 
affect a few hundred people per year. The conventional 
approach is the same. For example, Cheng et al.9 
consider a number of settings in which the optimal 
trial sample size has order of magnitude the square 
root of prevalence. So if sample size n = 1,000 is best 
for a trial involving therapies that will affect a mil-
lion patients who have the disease in question, then 
n = 32 is best when the disease prevalence is 1,000. 
In cases for which prevalence is not precisely known, 
calculations can use rough estimates of its size. The 
availability of other therapies and uncertainties regard-
ing the possible future availability of new therapies 
that will render the current therapies obsolete can be 
considered explicitly.

Current regulatory approval processes and journal 
publication policies ignore crucial issues such as preva-
lence of disease. For example, they apply the same stand-
ards of statistical significance level (using 0.05). Such an 
attitude is not consistent with delivering good medicine. 
Of course, regulators are aware of prevalence when mak-
ing marketing approval decisions. But they are able to 
incorporate such information only informally, which is 
necessarily somewhat crude.

There is a Bayesian approach that — when possible 
— is better than having a fixed sample size. This is 
stopping the trial on the basis of the accumulating 
results when the answers to the scientific/clinical 
questions are known sufficiently well for applying the 
results to the broader patient population. This is one 
instance of the subject of the next section: adaptive 
trial designs.

Adaptive trial designs
The continuous learning that is possible in the 
Bayesian approach enables investigators to modify 
trials in midcourse. Modifications include stopping 
the trial, adaptively assigning patients to therapies that 
are performing better or that will give more informa-
tion about the scientific question of interest, adding 
and dropping treatment arms, and extending accrual 
beyond that originally targeted when the answer to the 
question posed is not satisfactorily known.

I will consider two examples. One is a trial in acute 
myeloid leukaemia10. The experimental agent troxaci-
tabine (T) was combined in turn with standard thera-
pies idarubicin (I) and cytarabine (A) and compared 
with the two standard therapies in combination: TI 
versus TA versus IA. The maximal trial sample size 
was 75 patients, and the endpoint was complete remis-
sion (CR) within 50 days of initial treatment. Bayesian 

probabilities of treatment comparisons were calculated 
continually. Patients entering the trial were assigned 
to therapy randomly, but imbalanced so as to favour 
therapies that had higher probabilities of being better. 
If a therapy’s assignment probability was sufficiently 
low, then it was to be dropped from the trial, and the 
trial would stop before accruing 75 patients if only 
one therapy remained. In the actual trial, therapy 
TI dropped first, after the twenty-fourth patient had 
accrued, with no CRs out of its five patients. Therapy 
TA was dropped, and the trial ended, after the thirty-
fourth patient had accrued, with three CRs out of its 
eleven patients. Standard therapy IA ended with 10 
CRs (56%) out of 18 patients, which was consistent 
with its historical rate.

For these data and assuming flat priors for all 
three CR rates, the posterior probability that TA is an 
improvement over IA is 7.8% and that TI is better than 
IA is only 1.7%. Moreover, if either experimental com-
bination is an improvement on IA, it is very unlikely 
to be much better. This example shows that, first, it is 
possible to learn from small samples, depending on the 
results, and second, that it is possible to adapt to what 
is learned to enable better treatment of patients.

The adaptive design used in this trial is not ideal, 
both from the perspective of treating patients effec-
tively and of getting as much information as possible 
about therapy comparisons. It is a delicate compro-
mise in both senses. And it makes the standard design 
of assigning the same number (such as 25) patients 
to each of the three therapies seem unethical in 
comparison.

For an adaptive design of a rather different type, 
consider a dose-finding trial. In a standard design, 
patients are allocated to a fixed number of doses in 
a grid. When the results become known, the inves-
tigators usually regret not having assigned patients 
in some other fashion. Perhaps the dose–response 
curve seems to be shifted to the left or right from that 
anticipated. If so, then assignment of patients on one 
end or the other of the dose range was wasted. Or 
perhaps the slope of the dose–response curve seems 
to be steeper than anticipated in a narrow interval. 
In this case the patients assigned to the flat regions 
of the curve would have been more informative had 
they been assigned doses in the region with steeper 
slope. Or perhaps early results made it clear that the 
dose–response curve was flat and that the trial could 
and should have been stopped earlier. Or the results of 
the trial could indicate that the standard deviation of 
response is greater or less than anticipated and so the 
trial should have been larger or smaller.

A better strategy, regardless of the results, is to pro-
ceed adaptively, analysing the data as it accumulates. 
In a trial investigating the dose–response of a neuro-
protective agent for treating stroke11–13, we used two 
stages, first dose-ranging and then confirmatory, if the 
latter was warranted. The dose-ranging stage (Phase II) 
continued until a decision was made that the drug was 
not sufficiently effective to pursue future develop-
ment, or that the optimal dose for the confirmatory 
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Placebo controls
Patients in a concurrent control 
group who are given a 
treatment that is 
indistinguishable from the 
experimental drug but which is 
inert — sometimes called a 
‘sugar pill.’ Patients are 
‘blinded’ or ‘masked’ as to the 
treatment they have been 
assigned. If clinicians are also 
masked as to the patients’ 
assignments then the trial is 
‘double-blind.’

stage (Phase III) was sufficiently well known. Switches 
from Phase II to III can be effected seamlessly, without 
stopping accrual.

Accrual in the stroke trial began in November 
2000 and ended in October 2001. Information about 
the dose–response curve was updated continuously. 
Each entering patient was assigned a dose (one of 16, 
including placebo) that maximized information about 
the dose–response curve, given the results observed so 
far. Neither the number of patients assigned to any par-
ticular dose nor the total number of patients assigned 
was fixed in advance. The endpoint was improvement 
in stroke scale from baseline to 13 weeks. To gather 
information about dose–effect more rapidly, each 
patient’s stroke scale was assessed weekly. We incor-
porated a longitudinal model of patient performance 
and carried out Bayesian predictions of the 13-week 
endpoint on the basis of available patient-specific 
information, and we updated probability distributions 
of dose–effect accordingly.

An adaptive design is more effective than standard 
designs at identifying ‘the right dose’. And it usually 
identifies the right dose with a smaller sample size. 

Another advantage is that many more doses can be 
considered in an adaptive design, even though some 
may be little used or even never used.

In the actual trial14, the adaptive assignment algo-
rithm was a great success, but the drug was not. The 
algorithm searched among the 15 positive doses and 
found nothing, finally focusing on assignments to the 
highest dose and placebo. The algorithm favoured 
stopping the trial for futility very early, but the sponsor 
had set a moderately large minimum sample size. The 
trial’s DSMB accepted the algorithm’s recommendation 
to stop the trial at this minimum, and there was no 
need for a confirmatory stage, seamless or otherwise.

A frequentist twist
The flexibility of the Bayesian approach can lead to 
complicated trial designs. Making many decisions dur-
ing a trial’s course can increase the rate of making an 
erroneous decision. Institutional review boards and oth-
ers involved in clinical research, including regulators 
when the trial is for drug or medical device registration, 
require knowing the trial design’s operating character-
istics. These include false-positive rate and power (the 

Box 3 | What prior?

Some readers will be impressed by the elegance of the Bayesian approach because it embodies a generally accepted view 
of the scientific method: make an observation, update what is known, and decide what experiment is most informative and 
cost-effective to do next. Such readers might wonder why anyone takes a frequentist approach. Historically, a major 
reason was the Bayesian requirement for a prior distribution. Finding a distribution of a parameter posterior to an 
experiment without specifying a prior distribution for that parameter is not logically possible. The analogous statement in 
the diagnostic setting is that it is not possible to find the probability of having a disease based on test results without 
specifying the disease’s prevalence.

Disease prevalence based on a patient’s characteristics is not usually controversial. Assessing treatment 
effectiveness at the start of a clinical trial is another matter. For the prior distribution in FIG. 1 (upper-left panel), 
there is 65% probability that p is greater than 0.35. What is the basis for this assumption? There may not be a relevant 
historical database. And using animal data is problematic. A prior distribution reflects the information about the 
treatment in question separate from the experimental results. This information includes the investigator’s 
understanding of the biology of the disease, historical results for the investigational and related treatments, and 
preclinical results for these treatments.

Whatever the form and substance of this information, a prior distribution can be assessed for any investigator. 
The rub is that prior distributions are specific to the investigator and might not be accepted by anyone else. So prior 
distributions are inherently subjective. Objectivity in science is generally elusive at best1,4. Indeed, the frequentist 
approach is itself subjective in a number of ways, including the models assumed, the parameters and hypotheses 
considered, and the experimental designs used. For example, as indicated above, conclusions from data 
SSFSSFSSSF depend on the investigator’s intentions. ‘Silent subjectivities’ such as these are dangerous in that they 
are difficult or impossible to make explicit. By contrast, subjectivity in prior distributions is explicit and open to 
examination (and critique) by all.

There are several approaches for overcoming concerns about the subjective nature of prior distributions. One is to 
consider a variety of prior distributions in attempting to approximate the posterior distribution held by all types of 
readers. Another is to publish experimental results with instructions for readers to calculate their own posterior 
distributions. In a regulatory setting, it is important for sponsors and regulators to agree in advance as to the prior 
distribution(s) that will be used. (The same is true for assessing utilities when we progress to formally considering the 
consequences of clinical trials.)

A common approach is to assume a prior distribution that is ‘non-informative’ or ‘open-minded’ in the sense that it 
has little influence on the posterior distribution1. An example is the flat prior distribution in the upper-left panel of 
FIG. 2. For such a distribution, the results of the trial carry essentially all the influence in the posterior distribution. 
Moreover, when the trial is at least moderate in size, prior distributions that are not too different will give similar 
posterior distributions; in particular, all prior distributions that are reasonably flat near parameter values that are likely 
on the basis of the trial results will give nearly the same answers as the prior distribution shown in FIG. 122.

The approaches described above have been reasonably successful. Regulators are appropriately concerned about 
the choice of prior, but this no longer seems to be a stumbling block to using a Bayesian approach. And the same is true 
in medical research more generally.
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Randomized controls
Concurrent controls who are 
designated to be controls by a 
randomization device instead 
of receiving the experimental 
therapy. The proportion of 
controls depends on the trial’s 
design; in many two-armed 
trials the proportion is 50%. In 
randomized adaptive trials, the 
proportion assigned to the 
control group varies over the 
course of the trial and depends 
on the most recent by-arm 
outcome information.

Historical controls
Individuals from a database or 
previous clinical trial(s) who 
received a therapy that is an 
appropriate comparison for an 
experimental therapy being 
investigated in a clinical trial.

Concurrent controls
Participants who take part in a 
clinical trial but do not receive 
the therapy under 
investigation. These 
participants are as similar as 
possible to those who receive 
the experimental therapy. They 
serve as a comparison group 
for assessing the benefit of the 
experimental therapy.

Active controls
Patients who receive or 
previously received a therapy 
that has been shown, or at 
least is perceived to be, 
effective for the disease or 
condition in question. A trial 
can be designed to show that a 
group of patients receiving an 
experimental therapy perform 
better than (superiority trial) or 
not worse than (non-inferiority 
trial) an active control.

Hierarchical model
A statistical model with more 
than one level of (nested) 
experimental units. An 
example is patients within 
trials. Patients are assumed 
to have a distribution with a 
parameter depending on the 
trial in which they participate, 
and the trial parameters 
themselves are regarded as 
having been sampled from 
some population. Statistical 
inferences concern individual 
trial parameters and also 
parameters that characterize 
the distribution of trial 
parameters.

probability of concluding a benefit when there is actu-
ally a benefit), average total sample size, average propor-
tion of patients assigned to the various treatment arms, 
probability of identifying the most effective dose and so 
on. Moreover, these bodies can request modifications in 
the design so as to ensure that the operating characteris-
tics meet conventional benchmarks, such as having no 
greater than a 5% false-positive rate.

For complicated designs, these calculations would 
not have been possible before the availability of high-
speed computers (BOX 1). In the modern era, they 
are straightforward using computer simulations. 
Treatment effects are specified in any particular 
computer run. For example, when assessing false-
positive rate the experimental and control treatments 
are assigned the same values of the treatment efficacy 
parameters. ‘Patients’ are generated in accordance 
with the trial design to receive the therapy indicated 
by the design. These ‘patients’ respond according to 
the prespecified parameters and have the appropriate 
variability. When the trial stops, its result (advantage 
of experimental over control or not) is recorded. Other 
characteristics of interest — such as trial sample size 
— are also recorded. This process can be repeated 
many times. The proportion of the simulations in 
which the trial claims a benefit for the experimental 
therapy is the positivity rate. A histogram showing the 
simulated sample sizes is the distribution of sample 
size in the case assumed (such as the null case when 
there is no difference in treatments). 

One can use the Bayesian approach to build a 
design and modify it to deliver predetermined fre-
quentist characteristics, such as 5% false-positive rate 
and 90% power at a particular difference in treatment 
effects. The design is essentially frequentist, and the 
Bayesian has, in effect, become a frequentist. Though 
the process puts restrictions on the Bayesian’s flexibil-
ity to update, the Bayesian approach served as a tool to 
build a frequentist design having good properties, such 
as small average sample size, fewer participants in the 
trial assigned to ineffective therapy and so on, with a 
consequent benefit for medical research.

Historical and other related information
In analysing the results of a clinical trial, the Bayesian 
attitude is to bring all available information to bear on 
the scientific question being addressed. Outside of a 
Bayesian perspective, such potentially important infor-
mation is usually overlooked because the methodol-
ogy used cannot incorporate it. Consider a randomized 
comparison of an experimental drug E and a control 
C, with survival as the primary endpoint. One type 
of information that is overlooked is patient-specific 
outcomes that might be correlated with survival. This 
is the subject of the next section. The present section 
considers relevant information that is available outside 
the trial.

Any particular trial is unlikely to be the first one 
conducted in the disease in question. Other trials might 
have considered therapy C, either as control or an 
experimental agent. In addition, databases of patients 

with the disease are usually available. These sources of 
information should be exploited in analysing the results 
of the current trial, and the Bayesian approach provides 
a means for doing so. Patients in earlier trials might 
be different from those in the current trial. Therefore, 
patients in previous trials cannot be regarded as 
exchangeable with patients having the same treatment 
regimen in the present trial. This setting is ideally 
suited for a hierarchical Bayesian analysis6,15–17.

In a hierarchical analysis, there are multiple levels 
of experimental units. When combining results of dif-
ferent trials there are two levels: patients within trials 
and the trials themselves. The population of trials has 
unknown characteristics, just as in a typical statisti-
cal problem. We have a sample from this population, 
numbering as few as two. The inferential problem is 
different from usual because the experimental units 
(trials) in the sample are not directly observable. 
Rather, we observe a sample nested within the sample. 
Patients provide partial information about the trials 
for which they represent and therefore they provide 
some information about the characteristics of the 
population of trials. This connection is a mechanism 
for borrowing information across trials.

The extent of borrowing is not dictated in advance, 
but instead is determined by the degree of concord-
ance in the results of the various trials. Consider two 
trials. The first one consists of patients treated with C, 
which serves as a control for E in the second trial. If 
the results of control patients in the two trials differ 
greatly, then this suggests heterogeneity in the popula-
tion of trials and so there will be little borrowing of 
historical information. However, if the results of control 
patients are similar in the two trials then this suggests 
homogeneity and enables greater borrowing. In a trial 
with a sample size fixed in advance, the number of 
concurrent controls can be reduced (but not to zero) to 
exploit this borrowing. It is better to have an adap-
tive design that enables the extent of borrowing to be 
assessed, and the proportion of patients assigned to 
control (and the overall trial size) determined, in an 
on-line fashion.

Bayesian hierarchical modelling has many applica-
tions in clinical trials. Consider cancer. Many drugs 
that are effective in breast cancer work in other solid 
tumours as well. The tradition of oncology drug 
development is one cancer at a time. But it would be 
better to include patients from a variety of cancers in 
a single trial to assess activity across diseases. One 
level of experimental unit in a hierarchical model is 
cancer type and another is patient within cancer type. 
And if more than one trial is involved, ‘trial’ can be 
included as still a third level in the hierarchy. It is also 
possible (and important) to model the potential roles 
of biomarkers that might be predictive of therapeutic 
benefit across diseases.

Still another level of hierarchy is especially impor-
tant to regulators and drug developers: class of drug. 
Drugs in the same class may have similar effects, or 
not. Hierarchical Bayesian modelling allows for both 
possibilities. Borrowing results across trials of drugs in 
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the same class — to the extent determined by the data 
— can make for more informed decision making and 
smaller clinical trials. Other applications of hierarchi-
cal modelling are to drug safety and handling high-
dimensional data, such as that from microarrays18.

Biomarkers and auxiliary variables
Standard analyses of clinical trials compare the dis-
tributions of the primary endpoint in the treatment 
groups, perhaps adjusting for baseline differences in 
patient characteristics. For some endpoints, such as 
survival, not all patients experience the event in ques-
tion during the trial. The ability to use accumulating 
results turns the Bayesian focus to information that is 
available on individual patients for help in comparing 
therapies. For example, in cancer trials, information 
is available about tumour response, disease progres-
sion, patient performance status and so on. Especially 
important (although usually ignored) is information 
about the relationships of these early variables with 
survival. The relationships might be different for dif-
ferent treatment groups and can be modelled as such. 
These are auxiliary variables or auxiliary endpoints, 
in that they enable more precise assessments of the 
primary endpoint.

Patients who are treated earlier in the trial con-
tribute more information to understanding the rela-
tionships among auxiliary variables and long-term 
primary endpoints because these patients have longer 
follow-up times. Using information about these rela-
tionships in turn enhances the contribution of patients 
who are treated later because their early performance 
is utilized in drawing conclusions about their later 
(and unobserved) endpoints16,19. An additional and 
major benefit of modelling relationships between early 
and late endpoints is that it makes for stronger interim 
assessments of long-term endpoints and therefore 
improves the efficiency of adaptive designs.

Conclusions
The Bayesian approach has several advantages in 
drug development. One is the process of updating 
knowledge gradually rather than restricting revisions 
in study design to large, discrete steps measured in 
trials or phases. Another advantage of the Bayesian 
approach is that it is specifically tied to decision mak-
ing, within a particular trial, within a drug develop-
ment programme and within establishing a company’s 
portfolio of drugs under development. Other advan-
tages include the ability to use predictive probabilities 
and to build hierarchical models.

Bayesians can update at any time and without 
penalty. However, constructing a Bayesian design and 
then having to verify that its Type I error rate meets 

regulatory criteria exacts a penalty and loses part of the 
Bayesian advantage. However, it still has an advantage. 
Bayesian designs expand the frequentist envelope, even 
when accepting external constraints. Once Bayesian 
methods become more familiar to investigators and 
regulators, and once explicit decision-analytic criteria 
become commonplace in clinical trials, they will face 
fewer externally mandated restrictions.

This review has accentuated positive aspects of, and 
developments that result from, using Bayesian methods 
in clinical research. There have been disappointments 
and frustrations as well. Tradition has momentum and 
change is difficult. But the movement towards using 
Bayesian designs and analyses in clinical trials will con-
tinue, and at an accelerated pace. There is increasing 
demand from political bodies and consumer groups to 
make drug development more efficient, safer and yet 
faster. A danger is that we will abandon fundamental 
scientific principles. Using a Bayesian approach will lead 
to more rapid and more economical drug development 
without sacrificing good science.

Just as the Bayesian approach is used more in cer-
tain therapeutic areas of medical device development, 
the same will be true in drug development. To a large 
extent, this variability is due to personalities involved. 
But therapeutic areas in which the clinical endpoints 
are observed early obviously stand to benefit most. 
Diseases such as cancer in which there is a burgeon-
ing number of biomarkers available for modelling the 
disease’s progress will also benefit. These biomarkers 
will enable a patient’s progress to be monitored more 
accurately and a more accurate assessment of the 
patient’s outcome. The availability of early indicators 
of therapeutic benefit makes a therapeutic area ripe for 
Bayesian modelling.

In the immediate future, a barrier to incorporating 
Bayesian approaches more widely in drug develop-
ment is the attitude of regulatory agencies such as 
the FDA. Even more important are pharmaceutical 
companies’ frequently false perceptions of regulatory 
attitudes. However, regulators do not usually influ-
ence the designs of trials in Phases I or II and these 
are becoming increasingly Bayesian, especially in 
oncology. Moreover, strategic planning and portfolio 
management in some pharmaceutical companies is 
becoming increasingly Bayesian, including formal 
utility assessment and decision-making processes. Use 
leads to familiarity and to understanding. The advan-
tages of the Bayesian approach in the various types 
of endeavours will become evident to policy makers 
and decision makers, and Bayesian methods will spill 
into other areas of drug development, from preclini-
cal modelling to the design and analysis of Phase III 
clinical trials.       
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