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Bayesian Statistics and the Efficiency and
Ethics of Clinical Trials
Donald A. Berry

Abstract. The Bayesian approach is being used increasingly in medical
research. The flexibility of the Bayesian approach allows for building designs
of clinical trials that have good properties of any desired sort. Examples
include maximizing effective treatment of patients in the trial, maximizing
information about the slope of a dose–response curve, minimizing costs,
minimizing the number of patients treated, minimizing the length of the trial
and combinations of these desiderata. They also include standard frequentist
operating characteristics when these are important considerations. Posterior
probabilities are updated via Bayes’ theorem on the basis of accumulating
data. These are used to effect modifications of the trial’s course, including
stopping accrual, extending accrual beyond that originally planned, dropping
treatment arms, adding arms, etc. An important aspect of the approach
I advocate is modeling the relationship between a trial’s primary endpoint
and early indications of patient performance—auxiliary endpoints. This has
several highly desirable consequences. One is that it improves the efficiency
of adaptive trials because information is available sooner than otherwise.

Key words and phrases: Bayesian updating, decision analysis, predictive
probabilities, clinical trials, adaptive designs, clinical ethics, auxiliary end-
points, extraim analyses.

1. INTRODUCTION

The purpose of clinical trials is to learn about ther-
apies or interventions under consideration. The exper-
imental units are people. The Belmont Report (1979)
provides guidance for conducting medical research
with human subjects. It contrasts “clinical practice”
and “clinical research.” The former “refers to inter-
ventions that are designed solely to enhance the well-
being of an individual patient or client and that have
a reasonable expectation of success. The purpose of
medical or behavioral practice is to provide diagno-
sis, preventive treatment or therapy to particular indi-
viduals. By contrast, the term ‘research’ designates an
activity designed to test an hypothesis, permit conclu-
sions to be drawn, and thereby to develop or contribute
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to generalizable knowledge (expressed, e.g., in theo-
ries, principles, and statements of relationships). Re-
search is usually described in a formal protocol that
sets forth an objective and a set of procedures designed
to reach that objective.”

This view of clinical research is neither universally
held nor appreciated, even among researchers. In a sur-
vey of 547 U.S. oncologists, Joffe and Weeks (2002)
report that many “viewed the main societal purpose
of clinical trials as benefiting the participants rather
than as creating generalizable knowledge to advance
future therapy.” They indicate that “this view. . . con-
flicts with the established principles of research ethics”
and that “there may be a belief among some cancer spe-
cialists that clinical trials seamlessly unite research and
therapy. This belief, which challenges conventional
doctrines of research ethics, has important implications
for how we conduct, review, and regulate clinical trials,
as well as how we present them to patients.”

I have a different perspective on this question.
Clinical trials can and should be designed both to lead
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to generalizable knowledge and to benefit participants
in the trials.

There is an inevitable tension between research and
practice. If there were no clinical trials but instead
patients were assigned therapy that they and their
physicians thought best, then many potentially use-
ful therapies would go untested. Benefits of therapies
would be confounded with patients’ characteristics and
desires. For example, if a therapy that was overlooked
by most of the medical profession were to be used by a
few physicians and the patients did relatively well, we
could not be sure that the patients were typical or that
their physicians had given correlative care that was typ-
ical. Moreover, reports comparing clinical outcomes of
patients choosing different therapies would be based
on small sample sizes. Many of the most important ad-
vances in modern medical care would never have been
recognized had there not been randomized clinical tri-
als that enrolled thousands and even tens of thousands
of patients.

Randomization eliminates bias in the assignment of
patients to competing therapies. It is the only generally
accepted way to eliminate bias. Physicians who regard
different therapies being considered as having different
overall effectiveness cannot ethically enroll patients in
the trial. That is to say, physicians who participate in
a randomized clinical trial must be in “equipoise.” The
patients who enroll in clinical trials enable us to learn
about the relative benefits and risks of the competing
therapies. Their participation means that later patients
will receive better care, on average. This in turn implies
an overall positive drift in the effectiveness of medical
therapies—which is not to say thatevery putative
advance is in fact an advance!

So it seems to be a win–win situation. Patients in the
trial get therapies regarded as among the best available
and as being similar to other therapies in the trial.
Patients who come after the trial benefit from whatever
is learned during the trial. But there is a rub. Consider
a randomized trial comparing therapies A and B on
the basis of a short-term endpoint. The final results
indicate that A is significantly better than B. Consider
the last patient in the trial who was randomized to
therapy B. The results from the trial at the time this
patient was treated must have been at least suggestive
that therapy B was inferior. Such a circumstance is
unavoidable for short-term endpoints because the data
start pointing toward the eventual winning therapy
before the end of the trial when the results are taken
to be conclusive. Should not that patient’s therapy be
switched to A? If so, where do we stop in moving

backward in time through the trial? If we go way
back to the time at which the results started pointing
toward a particular therapy and switch therapeutic
assignments, then there is a good chance the designated
winner is in fact inferior. We may never learn the truth.

The standard resolution of this conundrum is to
avoid looking at the results of ongoing trials, or at least
to restrict the looking to a data monitoring commit-
tee that is operating under prespecified guidelines con-
cerning when a trial can be stopped. Such committees
carry the onerous burden of ensuring that patients in
the trial are not ill-treated while protecting the sci-
entific integrity of the trial (Ellenberg, Fleming and
DeMets, 2002). This burden epitomizes the tension be-
tween research and delivering good therapy. I will not
discuss the decision-making process of data monitor-
ing committees, except to say that the most useful set
of guidelines for such committees involves (Bayesian)
predictive probability calculations of future results on
the basis of results that are currently available. The
many data monitoring committees upon which I have
served and to whom I report rely on such calculations.
An example is reported in Lewis et al. (2001).

In the other extreme from the example above, sup-
pose that a trial is nearing the end of its accrual goals.
The objective is to decide whether therapy A is supe-
rior to therapy B on the basis of efficacy. Therapy A has
many serious side effects and therapy B is relatively be-
nign. The results to date are pretty clearly suggesting
that the two therapies have identical efficacy. In partic-
ular, the predictive probability of achieving superior-
ity eventually is very small. Continuing the trial to its
planned sample size will expose additional patients to
a toxic therapy A with little evident compensating ben-
efit. Stopping at this point was not considered in the
protocol. But it is difficult to imagine that continuing
the trial is reasonable, regardless of whether stopping
was considered explicitly in the trial’s design.

A culprit in the above examples is striving to
have a fixed sample size. Sample sizes are usually
determined via power considerations by averaging over
the possible results. Two types of results that are
available toward the end of the trial are considered in
sample size determinations. Some results are very clear
in pointing to one conclusion or another, including
the conclusion of the equivalence of the therapies.
For other results, uncertainty about the conclusions
will still exist and additional data will help us to
understand which hypothesis is correct. In the former
case, continuing is unnecessary and in the latter case
it is important. The problem with fixed-sample-size
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calculations is that they average over both types of
results; the sample size is too large in the first case and
too small in the second.

The design of modern clinical trials has moved an
iota from having fixed sample sizes. They employ
interim analyses at specific time points during the
accrual and, in studies with time-to-event endpoints,
after the accrual. Standard frequentist methods for
early stopping of a trial focus on preserving the overall
type I error rate. These methods tend to be very
conservative and to call for stopping only when the
results are quite extreme. Such methods are steps in
the right direction, but they are not big enough.

In this article I address expanding the horizons of
the standard frequentist approaches to the design of
clinical trials. The approach I advocate is radical in
medical research but common in scientific enquiry
more generally: look at the data! And let it guide
the future course of the trial. The flexibility of the
Bayesian perspective facilitates taking this tack (Berry,
1993). In this article I consider a variety of types of
actions during the course of a clinical trial. These
include stopping the trial early, as discussed above.
They also include adaptively assigning patients to
therapies (drugs, drug combinations or different doses
of a drug) that are performing better, adding and
subtracting treatment arms and extending the accrual
beyond that originally targeted when the answer to the
question posed is still not known.

I will describe actual settings and actual trials. Many
of the designs I consider have been used in clinical tri-
als and others are being considered by investigators
and pharmaceutical companies for future trials. The
goals are (i) to more effectively use patient resources
while treating patients in clinical trials effectively and
(ii) to identify better drugs and other therapies more
rapidly, moving therapies more quickly through the de-
velopment process. For some of the designs these goals
are made explicit through the use of decision analysis.
Other designs are ad hoc and their performance char-
acteristics are evaluated using simulation.

Consistent with the Bayesian approach, the designs
presented here exploit the available evidence regard-
ing the therapy in question and also as regards related
therapies. In addition, information gleaned during an
ongoing clinical trial is incorporated via Bayes’ the-
orem into what was known at the start of the trial
(Berry, 1996; Spiegelhalter, Freedman and Parmar,
1994). However, to adhere to conventional and regula-
tory standards, I simulate type I error rates and power
characteristics of the design proposed. If the type I

error rate is too high for regulatory acceptance, then
I modify the design to bring it into line with the regula-
tory norms. In such cases the Bayesian approach serves
as little more than a tool—a very handy tool!—for de-
veloping efficient and ethical designs that have accept-
able frequentist properties.

Returning to the point of the opening part of this sec-
tion, the tension between clinical research and clini-
cal practice is inevitable. No approach can completely
overcome this tension. A virtue of the Bayesian ap-
proach is that it reckons with the conflicting desiderata
in a completely explicit way. Decision making in clini-
cal research is never easy, even when the trade-offs are
spelled out. But Bayesian decision analysis clearly lays
out the pros and cons, and it balances them in such a
way as to maximize the benefit to society or to a por-
tion of society. Altering the balance alters the decision,
and so sensitivity analyses with respect to the utilities
and prior distributions may be necessary.

The Bayesian approach does not resolve all the eth-
ical issues involved in clinical research. No approach
can do this. However, taking a Bayesian approach can
lead tobetter treatment for patients both in and out of
clinical trials by providing more efficient designs of tri-
als and of drug development programs more generally.

2. PREDICTIVE PROBABILITY

Predictive probability is an enormously important
contribution of the Bayesian approach. Without it, the
Bayesian approach would be much less compelling.
Predictive probabilities are essential for designing clin-
ical trials from a Bayesian perspective. As I indicated
in the Introduction, it is natural and useful for monitor-
ing ongoing trials.

This is not an appropriate forum for developing the
mathematics of predictive probabilities, but I will give
an example. Consider the simple case of a binomial
experiment, with a sample size ofn and a success rate
of θ . There aren + 1 possible numbers of successes.
Conditioning onθ , these have binomial probabilities.
But θ is unknown (why else conduct the experiment?).
Bayesians condition on what is known and associate
probability distributionswith unknown quantities. In
this instance,θ has a prior probability distribution that
reflects the available information. Predictive probabili-
ties are conditional on the prior distribution (or the cur-
rent distribution) ofθ but they are not conditional onθ .
Namely,P (k successes) = EP (k successes|θ), which,
in the caseθ has a beta distribution, are the familiar
beta-binomial probabilities.



178 D. A. BERRY

Other types of sampling, other types of prior distrib-
utions and the possibility of covariates give rise to more
complicated predictive distributions. Indeed, in many
realistic settings, predictive probabilities cannot be cal-
culated analytically. However, modern computational
methods easily skirt this erstwhile stumbling block.

Predictive probabilities incorporate two sources of
uncertainty. One is the usual sampling variability (in
the example above, that inherent in the binomial distri-
bution for fixedθ). The other is the uncertainty about
the various parameters, such as that inθ above. Con-
sidering only one source of variability overestimates
the precision in one’s ability to predict future results.
Of the two sources, the one that is more commonly
ignored is that inθ . (For example, a common—and
unfortunate—attitude to making power calculations is
to assume that a proportion observed in a previous
study is the true population proportion in the next
study.) This can lead to making the wrong decisions
about a trial’s sample size and about whether a trial
with a particular design is appropriate.

3. DECISION ANALYSIS AND TRIAL DESIGN

Choosing a design for a clinical trial is making
a decision. The decision has ramifications that can
be explicitly stated and considered. Formal decision
analysis is second nature to many statisticians, but it
is surprisingly obscure to other scientists. Following
any particular course of action—including the design
of a clinical trial—leads to an outcome in a set of
possibilities that is determined by the course of action.
For decision purposes, a pair of numbers is associated
with each possible outcome: the outcome’s predictive
probability and its utility. Averaging the utility with
respect to the predictive probabilities gives the utility
of the course of action. (However, the mere process
of evaluating the predictive probabilities and utilities
can be enormously beneficial to decision makers, even
without averaging the utilities.)

Just as for other decisions, trial designs are ordered
by their utilities—see Berry (1995, 1996), Berry and
Eick (1995), Clemen (1991), Lewis and Berry (1998)
and Sox, Blatt, Higgins and Marton (1988). Designs
having maximal utility are called “optimal.” It is pos-
sible and even likely that the utility assessment has
not considered all relevant aspects. Therefore, one may
reasonably select a nonoptimal trial design. However,
before choosing a design that has substantially less util-
ity than the maximum, one should endeavor to incor-
porate the utility aspects not previously considered and
redo the analysis.

Utilities can be determined in terms of the effective
treatment of patients, both those within and those
outside the trial. Utilities can be economic, as when a
pharmaceutical company is contemplating sponsoring
a clinical trial. All trials have costs, and these are
relatively easy to predict. Benefits are less clear, even
when they are strictly economic. Profits will depend on
the demand for the drug. This depends in turn not only
on the drug being approved for marketing by regulators
but also on the results of clinical trials concerning the
drug’s benefits—and on the perception of the medical
community concerning those benefits. It also depends
on the drug’s side-effect profile and its cost. And it
depends on the efficacies, side effects and costs of its
various competitors, including competitors that emerge
during the drug’s development!

The next section deals with an example in which
utility is determined in terms of the effective treatment
of a collection of patients who have a particular disease
or condition.

4. DECISION ANALYSIS AND CHOOSING
SAMPLE SIZE

Choosing a sample size is a particular design issue.
Consider a two-armed clinical trial. Take the utility of
any particular design to be its consequent impact on
patients who have the disease under study. In a decision
analysis one can consider delivering good treatment
to all such patients. As indicated in the Introduction,
Joffe and Weeks (2002) report that “many respondents
viewed the main societal purpose of clinical trials
as benefiting the participants rather than as creating
generalizable knowledge to advance future therapy.”
I disagree with Joffe and Weeks—and I disagree with
the need to have the sharp distinction between clinical
practice and research that is drawn in the Belmont
Report (1979).

Suppose clinical trials are being planned. LetN be
the size of the “patient horizon,” those patients in and
out of the trials who will benefit from the conclusions.
[The concept of patient horizon is due to Anscombe
(1963) and Colton (1963).] The numerical value of
patient horizonN varies depending on the disease and
the available treatments. The population of patients
who have coronary artery disease and who would
benefit from an advance in therapy is very large,
but few patients would benefit from an advance in a
rare type of children’s cancer. Patients in the latter
population are no less and no more important than
in the former, but in the latter case the investment
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associated with any knowledge obtained will have less
benefit. These two extremes are addressed in the same
way when choosing a clinical trial’s sample size via
power calculations. However, a sample size that is right
for one in terms of treating as many patients with the
disease in question as effectively as possible cannot be
right for the other.

Suppose the sample size calculated from considera-
tions of power turns out to be 500. In the case of small
horizonN , a substantial portion of the patients—all,
in the case of some children’s cancers—may be in the
clinical trial and so few if any patients will get to take
advantage of anything learned from the trial. In the case
of largeN , a 500-patient trial may be too small to en-
able an informed choice between the two treatments
and so the very large number of patients outside the
trial may be treated with the inferior therapy. A con-
clusion of this section is that, when the goal is treating
as many patients as effectively as possible, the sample
sizes of the clinical trials in these two extremes should
be very different.

The patient horizonN is seldom precisely known.
In particular,N depends on the effectiveness and side
effects of the various treatments in the trial, which
are themselves unknown. However, precision in setting
the value of N is not critical and only its order
of magnitude need be considered. Considering the
extremes, diseases or conditions that are very common
(large N ) call for larger trials than do rare diseases
(smallN ).

When N is unknown, the results of this section
apply reasonably well by simply replacing it with
its mean. So experts could assess the size of the
patient population and the potential availability of
other therapies for each of the next several years.
Patients presenting in the future could be discounted by
the probability that they will be treated using a therapy
other than one involved in the trial. This gives a mean
value ofN that can be used in designing the trial.

For convenience, consider dichotomous outcomes:
success and failure. The goal is to treat successfully
as many of theN patients as possible with one of
two therapies. The utility of any trial is the number
of successes over the patient horizon (including both
those in the trial and those beyond). An optimal sample
size n maximizes the expected number of successes
over the patient horizonN . By definition, patients in
the horizon are those who present after the trial and
who are given the therapy that performed better in the
trial.

The optimal trial sample size has order of magnitude
N1/2 (Cheng, Su and Berry, 2003). If there are two
clinical trials (followed thereafter by clinical practice
with the better performing therapy), then the first trial
of the two should have a sample size with order of
magnitudeN1/3. For example, ifN = 106 and the
optimal sample size is 1,000 for a single trial, then the
optimal sample size for the first of two trials is 170. If,
instead,N = 1,000, then the respective optimal sample
sizes are 32 and 17.

In a decision analysis one can explicitly consider
asymmetry in information concerning the treatment
arms under consideration. The allocation proportions
may then be asymmetric as well. Continue to assume
a two-armed trial with the goal of effectively treating
as many patients in horizonN as possible. Consider
three particular forms of prior information about the
unknown rates of success: beta(1,1), beta(2,1) and
success rate known to equal 0.50.

Consider the specific values ofN in Table 1. This
table shows the optimal sample sizes for each of the
arms. As indicated above, these increase withN in
proportion to N1/2 (approximately). Consider case
N = 1,000 and distribution beta(1,1) (uniform on
the unit interval) for both success rates, which is
the leftmost case in Table 1. The table indicates that
21 patients should be assigned to one of the arms and
20 to the other. In view of symmetry, either arm 1 or

TABLE 1
Optimal sample sizes for arms 1 and 2 in a two-armed clinical trial and corresponding success proportion among all N

patients. “(1,1)” and “ (2,1)” indicate beta prior distributions with those parameters; the optimal asymptotic (large N )
success proportion is the prior expected maximum of the two success rates

Patient horizon, Arm 1 Arm 2 Arm 1 Arm 2 Arm 1 Arm 2
N (1,1) (1,1) Proportion (1,1) (2,1) Proportion (1,1) 0.50 Proportion

100 6 5 0.63 4 8 0.71 9 0 0.60
1,000 21 20 0.65 16 30 0.74 29 0 0.62

10,000 70 69 0.66 56 98 0.75 99 0 0.62
LargeN

√
N/2

√
N/2 2/3

√
N/3

√
N 3/4

√
N 0 5/8
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arm 2 could get the extra patient. (Symmetry does not
extend to equality and so these two sample sizes are
not equal. With 21 patients assigned to arm 1 and 20
to arm 2, adding exactly one more patient to arm 2
would never change the optimal arm for assigning
to patients outside of the trial. The result for this
patient could only introduce the possibility of ties in
the observed success rates, in which case both arms
would be optimal outside of the trial.) Using this 21 :20
assignment, the resulting success proportion among the
1,000 patients in the horizon is 65%, which cannot
be improved upon by any fixed-sample-size design.
Consider the extremes, not running a clinical trial at
all and running a trial entering all 1,000 patients; both
have expected success proportions of 50%.

For the middle case considered in Table 1, the
beta(2,1) arm is more promising than the beta(1,1)

arm and so it is assigned more patients—about√
3 − 1 = 73% more for largeN . For the third case

considered, arm 2 is known to have a success rate of
0.5. One of the purposes of the trial—in addition to
treating patients effectively—is to identify whether the
unknown arm 1 success rate is greater than or less than
the known arm 2 success rate. Allocating patients to
the known arm 2 in the trial would be wasteful and the
alternative, arm 1, has the same (unconditional) prob-
ability of success. Any known arm would be held in
reserve and used after the trial should arm 1’s observed
success rate be less than 0.5. (Seldom is it reasonable to
assume that a treatment’s success rate is known since
patient populations vary over time because of chang-
ing methods of diagnosis and changing attitudes about
treatment, and so a treatment’s success rate may vary
similarly.)

This section assumed no interim monitoring. A sub-
stantial increase in the success rate is achievable if up-
dating is possible during the trial. Such updating could
be used to modify the proportions of patients allocated
to the two arms and it could be used to determine
when the clinical trial should end. These possibilities
and other related modifications are considered in the
next section. However, the next section is not explicitly
decision-analytic and in particular it does not address
maximizing a prespecified utility function in choosing
a clinical trial design.

5. ADAPTIVE DESIGNS OF CLINICAL TRIALS

This section deals with flexible designs. Although
these are not based on an explicit consideration of
utilities, the goals are efficient learning and effective

treatment of patients. For explicit decision-analytic
generalization of some parts of this section, see Berry
and Fristedt (1985).

Consider a trial having a particular design. Finding
the predictive probabilities of the trial’s results is
always possible, even for the most complicated of
designs. Similar calculations allow for finding a variety
of the design’s attributes, including the probability
of achieving a statistically significant benefit of one
therapy over another, the expected number of patients
in the trial and the expected number of patients in
the trial who successfully respond to their assigned
treatment. Comparing attributes for different designs
facilitates choosing one design over another.

The focus of this section is a family of designs that
are dynamic in the sense that observations made during
the trial can affect the subsequent course of the trial.
The general class of designs isadaptive or sequen-
tial. Adaptation means examining the accumulating
data periodically—or even continually—with the goal
of modifying the trial’s design. These modifications
depend on what the data show about the unknown hy-
potheses. Among the modifications possible are stop-
ping early, restricting eligibility criteria, expanding the
accrual to additional sites, extending the accrual be-
yond the trial’s original sample size if its conclusion
is still not clear, dropping arms or doses and adding
arms or doses. All these possibilities are considered in
the light of the accumulating information. Adaptive de-
signs also include unbalanced randomization where the
degree of imbalance depends on the accumulating data.
For example, arms that give more information about
the hypothesis in question or that are performing better
than other arms can be weighted more heavily (Berry
and Fristedt, 1985).

Adaptation is not limited to the data accumulating
in the trial. Information that is reported from other
ongoing trials can also be used. This is easier to
effect if one takes a Bayesian approach, possibly
using hierarchical modeling (Berry and Stangl, 1996;
Spiegelhalter, Myles, Jones and Abrams 2000).

Adaptive designs are used increasingly in cancer
trials. This is true for trials sponsored by pharmaceuti-
cal companies and more generally. For example, a va-
riety of trials at my home institution, The University of
Texas M. D. Anderson Cancer Center (MDACC), are
prospectively adaptive. I will describe some of them
here.
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5.1 Adaptive Dose-Finding in Phase II
Clinical Trials

The standard phase II dose-finding design allocates
a fixed number of patients to each dose in a grid.
In retrospect the investigators usually wish they had
assigned patients in some other fashion. Perhaps the
dose–response curve is shifted more to the left or right
than anticipated. If so, then the assignment of many
patients to one end or the other was a wasted effort.
Or perhaps the slope of the dose–response curve is
greater than anticipated and the response of patients
assigned to the flat regions of the curve would have
been more informative if the assigned doses were in
the region where the slope is apparently greatest. Or
perhaps results for the early patients made it clear that
the dose–response curve was flat and that the trial could
have stopped earlier. Or perhaps the results of the trial
show that the standard deviation of response is greater
or less than anticipated and so the trial should have
been larger or could have been smaller.

The approach of Berry et al. (2002) is to proceed
sequentially, analyzing the data as it accumulates; see
also Malakoff (1999) and Farr-Jones (2001). There are
two stages of the trial, first a dose-ranging stage and
then a confirmatory stage, if the latter is warranted.
The dose-ranging stage continues until a decision is
made that the drug is not sufficiently effective to
pursue future development or that the optimal dose
for the confirmatory stage (phase III) is sufficiently
well known. (Switches to phase III can be effected
seamlessly; see below.) The example trial of Berry
et al. (2002) involves a neuroprotective agent for
stroke. Accrual began in November 2000 and ended in
November 2001. This type of trial is designed to assign
each entering patient the dose (one of 16, including
placebo in this example) that maximizes information
about the dose–response relationship, given the results
observed so far. This dose could be in the region of the
greatest apparent slope, or it could be the placebo or
a high dose. However, patients are not assigned doses
in regions where evidence suggests that the dose–
response curve is flat.

In the dose-ranging stage, neither the number of
patients assigned to any particular dose nor the total
number of patients assigned in this stage was fixed in
advance. The dose-ranging sample size can be large
when the drug has marginal benefit, when the dose–
response curve is gently sloping or when the standard
deviation of the responses is moderately large. It tends
to be small if the drug has substantial benefit, if

the drug has no benefit, if the dose–response curve
rises over a narrow range of doses or if the standard
deviation of the responses turns out to be small.
(In addition, and somewhat nonintuitively, the dose-
ranging stage is small if the standard deviation of
responses turns out to be very large. The reason is that
a sufficiently large standard deviation implies that a
very large sample size is required to show a beneficial
drug effect. The required sample size may be so large
that it makes it impossible to study the drug and so the
trial stops in the dose-ranging phase before substantial
resources go down the drain.)

In the stroke trial considered by Berry et al. (2002)
the ultimate endpoint is the improvement in the stroke
scale from baseline to 13 weeks. If the accrual rate is
large, then the benefit of adaptive assignment is lim-
ited by delays in obtaining endpoint information. To
minimize the effects of delayed information, each pa-
tient’s stroke scale is assessed weekly between baseline
and week 13. Within-patient measurements are corre-
lated, with correlations greater if they are closer to-
gether in time. We incorporate a longitudinal model
into the analysis of the trial and do Bayesian predic-
tions (using multiple imputation) of the ultimate end-
point based on the current patient-specific information,
and we update the probability distributions of the treat-
ment effect accordingly.

In comparison to a standard design, adaptive dosing
is more effective in identifying the right dose, and it
usually identifies the right dose with a smaller sample
size than when using fixed-dose assignments. Another
advantage is that many more doses can be considered
in an adaptive design. (Even though some doses will be
little used and some might never be used, which ones
they are cannot be predicted in advance.) An adaptive
design therefore has some ability to distinguish abrupt
changes and other nuances in the dose–response curve.

The circumstances of the stroke trial of Berry at al.
(2002) are similar to those in many other types of trials.
Finding the right dose is a ubiquitous problem in phar-
maceutical development, and it is done neither well nor
efficiently. The adaptive nature of the stroke trial would
be less advantageous if we did not exploit early end-
points. Many diseases and conditions are characterized
by the availability of such early endpoints: informa-
tion about how a patient is doing (local control of the
disease, biomarkers, etc.) before reaching the primary
endpoint. Finally, the possibility of moving seamlessly
into phase III depending on the phase II results exists
for many types of drugs.
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The results of the stroke trial have been published
(Krams et al., 2003). The dose-assignment–trial-termi-
nation algorithm was a great success—but the drug was
not! The algorithm recommended stopping the trial for
futility as soon as the predetermined minimum number
of patients had accrued, and the data monitoring
committee agreed.

5.2 Seamless Phases II and III

An unfortunate convention is categorizing drug de-
velopment into phases. We go from one phase to the
next when we think we know something: the maxi-
mum tolerated dose from phase I or the “right dose”
from phase II to be used in phase III. In the Bayesian
perspective one never regards a quantity to be per-
fectly known. Instead, the Bayesian design carries un-
certainty along with whatever knowledge is available.
Phases of drug development are arbitrary labels that de-
scribe a process that is—or should be—continuous.

One of the consequences of partitioning drug devel-
opment into arbitrary phases is that there are delays
between them. For example, there is a pause between
phases II and III to set up one or more pivotal stud-
ies. As mentioned above, the design of the stroke trial
allows for avoiding such a pause. At each time point,
say weekly, the algorithm that guides the conduct of
the trial does a decision analysis. It provides a rec-
ommendation to (i) continue the dose-ranging stage of
the trial, (ii) stop the trial for lack of evidence of ef-
ficacy (inadequate slope of the dose–response curve)
or (iii) shift into a confirmatory stage. The shift in (iii)
can be made seamlessly, with no break in the accrual.
Indeed, it is theoretically possible to effect such a shift
without informing the investigators: they would con-
tinue to randomize doses, but, unbeknownst to them,
the only doses being assigned would be the phase III
dose and the placebo. (Although this seamless switch
was an option of the algorithm in the stroke trial, it was
not made available in the actual trial.)

At MDACC we designed a trial (Inoue, Thall and
Berry, 2002) that encompasses both phases II and III.
If there is a switch to phase III, it is seamless. The trial
compares a single dose of a drug with placebo, both
on top of standard chemotherapy. (It could incorporate
other doses in a manner similar to that of the stroke
trial, but it is easier to make progress in the scientific
community by effecting one innovation at a time.) The
anticipated effect of the drug is via local control. We
model survival as it depends on local control and as
it depends on treatment. Though remote, we allow for
the possibility that the drug has a beneficial effect on

survival that is not mitigated by local control. So local
control is an auxiliary endpoint in a way similar to
the role of the early stroke score in the stroke trial.
(See Section 6 for more discussion about auxiliary
endpoints.) However, the clear focus is on survival as
the primary endpoint, and the utility of the auxiliary
endpoint must be demonstrated by the results actually
observed in the trial. We exploit any relationships that
exist, but do not assume such relationships. We analyze
the data in the trial frequently and adapt to the accruing
evidence.

The seamless aspect is as follows. Initially, only
MDACC patients are accrued to the trial. Think of this
as phase II. If the accumulating data are sufficiently
strong in suggesting that the drug has no effect on
local control or survival, then the trial stops. If the
data suggest that the drug may have an impact on local
control and that this impact translates into a survival
benefit, then the trial will be expanded to include other
centers and the accrual rate will increase accordingly.
During such an expansion, patients continue to accrue
at MDACC so that there is no downtime in the local
accrual while other centers gear up for joining the
trial. This is efficient use of patient resources because
the responses of patients accrued early at MDACC
contribute to the eventual inferences about survival.
These patient responses are the most informative of
those enrolled in the two phases because their follow-
up times are the longest.

The trial continues until (i) stopping occurs for
futility, (ii) the maximum sample size of 900 is
reached or (iii) the Bayesian predictiveprobability of
eventually achieving statistical significance becomes
sufficiently large. Should (iii) occur, the accrual ceases
and the drug company submits an application for
marketing approval to regulatory agencies.

The sample size of a conventional phase III trial with
the desired operating characteristics is 900. We take
this to be the maximum sample size in the seamless
design. The actual accrual is very likely to be much less
than this maximum sample size and on average it will
be about half as large. On the other hand, incorporating
the same number of interim analyses in a conventional
design using an O’Brien–Fleming stopping boundary
allows for only a slight decrease in the average sample
size. Under any hypothesis, null or alternative, the
Bayesian design occasionally leads to a relatively large
trial (close to 900 patients). However, a pleasant aspect
of a Bayesian design is that the sample size is large
precisely when a large trial is necessary. Conventional
trials may well (and sometimes do!) come to their



BAYESIAN STATISTICS AND CLINICAL TRIALS 183

predetermined end with an ambiguous conclusion. In
a Bayesian approach one may choose to continue
such a trial to resolve the ambiguity, and this option
has substantial utility. (Carrying this argument to the
maximum sample size, there may be times for which
stopping at 900 is ill advised, but for logistical reasons
we felt the need to specify a maximum size.)

Reductions in sample size result from two charac-
teristics of the seamless design described above. First
are the frequent analyses to assess the predictive prob-
ability of eventual statistical significance. The second
is the explicit modeling of the possible relationship be-
tween local control and survival. Of the two, the second
is more important.

A conventional drug development strategy involves
running a phase II trial that addresses local control,
digesting the results and, if the results are positive,
starting to develop phase III trials with survival as the
primary endpoint. As indicated above, in comparison
with such a strategy, a seamless approach can greatly
reduce the sample size. In addition, a seamless design
minimizes the pauses between phases and so the total
drug development time is greatly shortened.

5.3 Adaptive Allocation

The adaptive designs discussed so far are motivated
by the desire to learn as efficiently and as rapidly as
possible. Another kind of adaptive design aims to treat
patients as effectively as possible. These designs use
adaptive allocation in which patients are more likely
to be assigned to treatments that are performing better.
In addition to making clinical trials more attractive to
patients and thereby increasing participation in clinical
trials, such strategies have the interesting side effect of
efficient and rapid learning!

As of this writing more than a dozen trials at
MDACC have been designed and are being conducted
using adaptive allocation. Our standard approach is
to randomize treatment assignment, but to shift the
weights toward better performing arms as the trial pro-
ceeds and the results accumulate. Many of these tri-
als have more than two arms. The arms are sometimes
distinct therapies, and sometimes they are closely re-
lated. An example of the latter is an MDACC trial in-
volving five doses (including 0) of a drug. For reasons
I will not go into, the dose–response curve is proba-
bly not monotone. In particular, efficacy may increase
for small doses and then decrease. Initially we assign
doses in a graduated fashion, climbing the dose ladder
slowly. But as doses become “admissible,” we assign
patients to those that have been performing well.

Consider a patient who qualifies for the trial. To
decide which dose to assign we calculate the current
(Bayesian) probabilities that each admissible dose is
better than the placebo. This calculation uses all avail-
able information. We allocate doses randomly, with
weights proportional to these probabilities. [The first
version of this idea is 70 years old, dating to Thompson
(1933). An historical footnote is that Thompson’s
10-page paper focused almost exclusively on the com-
putational problem of evaluating the probability that
θ1 > θ2, where these parameters have independent beta
distributions. The era of computers renders such a cal-
culation trivial, but in Thompson’s time it was the great
hurdle.] We consider other allocation algorithms, in-
cluding assigning in proportion to the powers of these
probabilities. The assignments we consider involve
some amount of randomization, but patients are more
likely to receive doses that are performing better. Doses
that are doing sufficiently poorly become inadmissible
in the sense that their assignment weight becomes 0.
When and if we learn that the drug is effective, we stop
the trial. When and if we learn that the drug is ineffec-
tive, then again we stop the trial. Patients in the trial
benefit from data collectedin the trial.

Our explicit goal is to treat patients more effectively,
but a happy side effect is that we learn efficiently. We
evaluate a design’s frequentist operating characteristics
and modify the sample size if necessary.

Thompson-like designs are similar to play-the-
winner designs in that their goal is to treat patients in
the trial more effectively. They are also similar in that
both designs are ad hoc and neither is optimal in any
sense that I know. Various optimality criteria have been
suggested for evaluating adaptive trials. The most com-
mon is maximizing an expected sum of observations
over the course of the trial, such as the total number of
successes, possibly with later observations discounted
relative to the next observation (Berry, 1972, 1978;
Berry and Fristedt, 1985). Decision problems of this
type are called bandits. For example, two-armed ban-
dits involve two treatments. Finding optimal bandit
strategies means solving dynamic programming prob-
lems. The solutions can require intensive computation,
but finding on-line solutions during a trial is not out of
the question, even for some rather complex settings.

A characteristic of optimal strategies for commonly
considered objectives in bandit problems is that they
are deterministic. One of the vagaries of clinical trials
is that the prognosis of patients may fluctuate over the
trial’s course. This would not be a serious problem if
prognoses were well understood and easy to measure.
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Usually, neither is true. Or, more precisely, we seldom
know whether they are true. A treatment may do
relatively well during a period when it happened
to be assigned to patients who had relatively good
prognoses. When following a deterministic strategy,
such a treatment may be used for some number of
patients in a row and its performance may therefore be
artificially inflated. An easy fix is to mix a randomized
assignment with an optimal assignment: assign the
optimal arm with probabilityr and an arm chosen
randomly with probability 1− r . At MDACC we have
not yet progressed to this point. However, we recognize
the importance of having some level of randomization,
which is why we use Thompson-like strategies.

5.4 Process or Trial? Evaluating Many Drugs
Simultaneously Using Adaptive Allocation

The greatest room for innovation and for improving
drug development is effectively dealing with the enor-
mous numbers of molecules that are available as poten-
tial drugs. The notion of screening drugs one at a time
is ingrained in the pharmaceutical culture. This notion
is inefficient in the extreme. Only those companies that
are able to process many drugs simultaneously and ef-
ficiently will survive.

Many different drugs should be evaluated in the
same preclinical experiments. During the evaluation
process, there should be continuous updating (via
Bayes’ theorem) with some candidates dropped and
others added. The degree of focus on any particular
drug will depend on the available data. Drugs that are
apparently more promising will move faster through
the preclinical setting. Drugs that give disappointing
data will languish.

These ideas apply as well to clinical trials. As an ex-
ample, at MDACC we are building the foundation for a
phase II trial for evaluating drugs that is more a process
than a trial. The idea is a straightforward extension of
the adaptive assignment strategies described above. We
start with a number of treatment arms plus a control—
possibly a standard therapy. We randomize patients to
the arms and learn on-line about their relative efficacy.
Arms that perform better get used more often. An arm
that performs sufficiently poorly gets dropped. When
an arm does well enough it graduates into phase III; if
it does sufficiently well, it might even replace the con-
trol. As more arms become available, we add them to
the mix.

The result is that better arms move through quickly
and poorer arms get dropped. An advantage to patients

in the trial is that they receive better treatment (pro-
vided the arms are not the same). The advantage to pa-
tients outside the trial is that they get access to better
drugs more rapidly.

5.5 Extraim Analyses

Many clinical trials end without a clear conclusion.
For example, a statistical significance level of 5% in the
primary endpoint may be required for drug registration
and thep-value may turn out to be 6%. The regulatory
agency suggests that the trial was “underpowered”
and that the company should carry out another trial.
It would be much more efficient to simply increase
the sample size in the present trial with the goal of
resolving the issue. But the possibility of extending the
accrual increases the type I error rate. The principle is
identical to that for interim analyses.

A solution is to build into the design the possibil-
ity of continuing the trial depending on the results,
suitably adjusting the significance levels. In contrast
to adjustments for interim analyses, I adjust for ex-
traim analyses in the opposite direction, with much
of the overall significance level “spent” at the origi-
nally planned sample size. For example, taking equal
significance levels at each possible termination point
is preferable to O’Brien–Fleming stopping boundaries
because the latter are overly conservative. Allowing for
extending the trial increases the maximal sample size
and also the average sample size. However, a modest
increase in average sample size (such as 10%) comes
with a substantial increase in statistical power (such
as 80% increasing to 95%). The reason for such a ben-
eficial trade-off is that the trial is extended only when
an extension will help resolve marginal results.

The “penalty” in significance level can be either
partially or fully offset by including futility analyses as
part of the design. Namely, the trial would be stopped
for sufficiently negative results at preset interim time
points. The reason such analyses offset the penalty for
extraim analyses is that the null hypothesis is never
rejected when the trial stops for futility. Decreasing the
opportunity for a type I error also decreases the power
of the trial. However, this decrease is usually quite
modest and in any case is more than compensated for
by the increase in power due to the extraim analyses.

The increment in sample size depends on the avail-
able data at the time the decision is made to continue
the accrual. It also depends on the number of possi-
ble extensions. I base each extension on thepredictive
power. The usual definition of power assumes a par-
ticular value of the parameter of interest, sayθ . Pre-
dictive power considers all possible values ofθ . The
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data available at the time of the extraim analysis play
two roles. First, they count in the final results of the
trial. Second, they are used to update the (Bayesian)
probability distribution ofθ . We fix the total sample
sizen and calculate the power for detecting each pos-
sible value ofθ . We average this power with respect
to the probability distribution ofθ to give the predic-
tive power for sample sizen, and extend the accrual to
give a total sample size having a prespecified predictive
power. If there is no such value ofn, then continuing
the accrual may be unwise.

There is an aspect of the above development that
may seem unrealistic. The problem is that endpoints
for those patients treated in the trial may not be
available at the time of the extraim analysis. Even if
the endpoint is tumor response, there is a delay in
obtaining this information. However, endpoint results
for patients in the trial can be predicted along with
that of patients not yet accrued. If there is some early
information (biomarkers, performance status, etc.) that
is correlated with the endpoint of interest, then this
can be used to inform the prediction. A special and
important case is when the endpoint is time to an
event. The fact that a patient has not yet reached
the event is useful information that is accommodated
in Bayesian updating. But if there is no patient-
specific early information, then patients treated but
not yet assessed for response are handled in the
same way as patients not yet treated. (This set of
issues is sufficiently important that they deserve being
addressed separately—see Section 6.)

The above process is complicated, but it can be com-
pletely and precisely described. That means the process
can be simulated. The simulations can be carried out
under various assumptions about the parameter of in-
terest. In particular, the false-positive rate can be calcu-
lated. If there is a target significance level (such as 5%),
then the various inputs into the design (number and
type of extraim analyses, number and type of futility
analyses, etc.) can be varied until achieving that target.
An advantage of simulations is that each iteration pro-
vides a fully accrued trial. So it is possible to check
any characteristic of interest regarding the trial’s de-
sign by calculating the proportion of the trials that have
the characteristic. Among the characteristics of interest
are power, actual sample size and the probability of ex-
tending the accrual.

6. AUXILIARY ENDPOINTS

The adaptive designs considered in Section 5 are
based on information that accrues during the trial

on the primary endpoint. If the primary endpoint
is delayed and the accrual is rapid, then adaptive
methods are of limited value. The present section
addresses statistical procedures for designs that exploit
accumulating information on other than the primary
endpoint.

Suppose that the endpoint is time to disease pro-
gression and a patient has not yet progressed. The ab-
sence of an event is information that can be used for
Bayesian updating of the distributions of the parame-
ters involved.

Information accrues as well about each patient’s
condition. Whether the patient’s tumor has responded
is information, and this is so even if tumor response
is not the primary endpoint. The point is that tumor
responsemay be related to the primary endpoint.
A patient’s performance status can change over time
(or not!) and that information too is important to assess
and incorporate into the analysis. There are many such
variables that are candidates for consideration. I call
them auxiliary endpoints because they may contain
information about the primary endpoint even though
they are not themselves primary.

It is important to take advantage of the wealth of
information that accrues in a trial. The approach is
to model the possibility of a relationship between the
accumulating information and the primary endpoint.

There are several benefits of modeling auxiliary
information. One benefit was considered in Sections
5.1 and 5.2. Waiting for long-term endpoints limits
the ability to modify the design of a clinical trial
during its course. Using auxiliary endpoints makes
adaptation possible. Another benefit of modeling is
that the relationship between the primary endpoint and
auxiliary endpoints may allow for announcing trial
results earlier or for getting earlier regulatory approval
of an experimental drug. For example, suppose that
survival is the primary endpoint and that modeling its
relationship with an auxiliary endpoint was considered
explicitly in the design of the trial. Accrual to the
trial has ended and all the patients have been treated.
There is insufficient information to conclude the drug’s
benefit on the basis of survival alone, in part because
many patients’ outcomes are censored. However, the
drug has a positive impact on the auxiliary endpoint,
and it turns out that in both drug and control groups
there is a clear relationship between the auxiliary
endpoint and survival. A model that utilizes auxiliary
information may conclude a survival benefit.

An auxiliary endpoint may or may not be a “surro-
gate endpoint.” This distinction is critically important.
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An auxiliary endpoint is not a surrogate, or more accu-
rately, whether it is a surrogate is not relevant for the
design and analysis. The focus of the definitive analy-
sis is the primary endpoint and not the auxiliary end-
point. The conclusion of the trial is whether the drug
improves survival.

A model incorporating early information can be arbi-
trarily complicated. In particular, it can contain many
variables. However, especially as regards registration
trials, one should tiptoe into model development by
considering one auxiliaryendpoint at a time. Espe-
cially important will be to explicitly consider the pos-
sibility that any relationship between auxiliary and
primary endpoints depends on the treatment. Should it
happen that there is an interaction between the auxil-
iary endpoint and the treatment—such as that tumor
response is related to survival in the control group but
not in the treatment group—then an appropriate model
automatically discounts the auxiliary endpoint in the
treatment group.

Modeling loses little, and much can be gained, as
indicated in the seamless phase II–III trial design
presented in Section 5.2. Again, the gains and any
losses can be assessed by simulation.

A special type of auxiliary endpoint is a biomarker.
Models relating to primary endpoints can be based on
longitudinal models that incorporate biomarker infor-
mation that accrues over time. An example longitudi-
nal model is described in Berry et al. (2002), which is
set in the context of a stroke trial.

7. DISCUSSION AND CONCLUSION

The Bayesian philosophy is rather different from the
standard frequentist approach to clinical trial design
and analysis. It is ideally suited to clinical research.
In particular, it is more flexible. And it is consistent
with the scientific principle of paying heed to the
accumulating data.

A possible use of the Bayesian approach is to
expand the range of clinical trial designs considered
in the standard approach, but then to evaluate the
frequentist operating characteristics (i.e., those that
are functionally related to the parameter values). Is
this approach Bayesian or frequentist? If the design
is changed to have “good” frequentist characteristics,
then it is frequentist. Otherwise it is Bayesian. But
the distinction is obviously blurred—suppose someone
other than the designer (such as a regulatory agency)
checks the frequentist characteristics and finds that
they are adequate. It may be Bayesian to one person
and frequentist to another.

A fully Bayesian approach is decision-analytic. That
is, one considers the consequences of an experiment
and evaluates their worth (or utilities). The usual
approach to designing clinical trials does not formally
address such consequences. Clinical researchers may
take into consideration the prevalence of the disease,
for example, but it is not formally considered in the
design. This has unfortunate consequences.

Consider a rare cancer, with two possible therapies.
Researchers would like to conduct a clinical trial. They
contact their local statistician, who calculates that the
sample size necessary (based on power considerations)
requires that all patients who have this disease in the
next 10 years participate in the trial. So no trial gets
done. An alternative is a decision-analytic approach
with the goal of treating as many patients with the
disease as effectively as possible. Such a trial can
always be conducted, and its sample size will be
modest—as indicated in Section 4.

This example serves as a prototype for this article.
The ethics of clinical research are problematic. The
Belmont Report (1979) resolves the conflict by sepa-
rating clinical research from clinical practice. Such a
separation is artificial—and unnecessary. A Bayesian
decision-analytic approach resolves the issue by facing
it head-on. The goal is to treat patients as effectively
as possible, whether they are in the trial or will present
later.

Much of the focus of this article is on adaptive de-
signs. There are obvious benefits to be derived from
updating one’s state of knowledge as relevant evidence
accumulates, and using this information to guide the
course of the trial. So why are adaptive designs not
more common? Part of the reason is the dominance
of the frequentist approach in medical research. The
Bayesian view has made occasional inroads into atti-
tudes among medical researchers, but only recently has
its influence been felt in pharmaceutical development.
Further changes will not be drastic or immediate. How-
ever, in the next few years we will see Bayesian ap-
proaches used increasingly. At least for the near future
they will be used as tools, with justifications following
a more or less traditional frequentist course. As time
passes and as researchers and regulatory folk become
more accustomed to Bayesian ideas, they will be in-
creasingly accepted on their own terms.
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