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Bayesian inference is usually presented as a method for
determining how scientific belief should be modified by
data. Although Bayesian methodology has been one of
the most active areas of statistical development in the past
20 years, medical researchers have been reluctant to em-
brace what they perceive as a subjective approach to data
analysis. It is little understood that Bayesian methods have
a data-based core, which can be used as a calculus of
evidence. This core is the Bayes factor, which in its simplest
form is also called a likelihood ratio. The minimum Bayes
factor is objective and can be used in lieu of the P value as
a measure of the evidential strength. Unlike P values,
Bayes factors have a sound theoretical foundation and an
interpretation that allows their use in both inference and
decision making. Bayes factors show that P values greatly
overstate the evidence against the null hypothesis. Most
important, Bayes factors require the addition of background
knowledge to be transformed into inferences—probabilities
that a given conclusion is right or wrong. They make the
distinction clear between experimental evidence and infer-
ential conclusions while providing a framework in which to
combine prior with current evidence.
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In the first of two articles on evidence-based sta-
tistics (1), I outlined the inherent difficulties of

the standard frequentist statistical approach to in-
ference: problems with using the P value as a mea-
sure of evidence, internal inconsistencies of the com-
bined hypothesis test–P value method, and how that
method inhibits combining experimental results with
background information. Here, I explore, as non-
mathematically as possible, the Bayesian approach
to measuring evidence and combining information
and epistemologic uncertainties that affect all statis-
tical approaches to inference. Some of this presen-
tation may be new to clinical researchers, but most
of it is based on ideas that have existed at least since
the 1920s and, to some extent, centuries earlier (2).

The Bayes Factor Alternative

Bayesian inference is often described as a
method of showing how belief is altered by data.
Because of this, many researchers regard it as non-
scientific; that is, they want to know what the data
say, not what our belief should be after observing
them (3). Comments such as the following, which ap-

peared in response to an article proposing a Bayesian
analysis of the GUSTO (Global Utilization of Strep-
tokinase and tPA for Occluded Coronary Arteries)
trial (4), are typical.

When modern Bayesians include a “prior probability
distribution for the belief in the truth of a hypothesis,”
they are actually creating a metaphysical model of
attitude change . . . The result . . . cannot be field-tested
for its validity, other than that it “feels” reasonable to
the consumer. . . .

The real problem is that neither classical nor Bayesian
methods are able to provide the kind of answers cli-
nicians want. That classical methods are flawed is un-
deniable—I wish I had an alternative . . . . (5)

This comment reflects the widespread mispercep-
tion that the only utility of the Bayesian approach is
as a belief calculus. What is not appreciated is that
Bayesian methods can instead be viewed as an evi-
dential calculus. Bayes theorem has two compo-
nents—one that summarizes the data and one that
represents belief. Here, I focus on the component
related to the data: the Bayes factor, which in its
simplest form is also called a likelihood ratio. In Bayes
theorem, the Bayes factor is the index through which
the data speak, and it is separate from the purely
subjective part of the equation. It has also been called
the relative betting odds, and its logarithm is some-
times referred to as the weight of the evidence (6, 7).
The distinction between evidence and error is clear
when it is recognized that the Bayes factor (evidence)
is a measure of how much the probability of truth
(that is, 1 2 prob(error), where prob is probability) is
altered by the data. The equation is as follows:

Prior Odds
of Null Hypothesis 3

Bayes
Factor 5

Posterior Odds
of Null Hypothesis

where Bayes factor 5

Prob~Data, given the null hypothesis!

Prob~Data, given the alternative hypothesis!

The Bayes factor is a comparison of how well
two hypotheses predict the data. The hypothesis
that predicts the observed data better is the one
that is said to have more evidence supporting it.
Unlike the P value, the Bayes factor has a sound
theoretical foundation and an interpretation that

See related article on pp 995-1004 and editorial
comment on pp 1019-1021.
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allows it to be used in both inference and decision
making. It links notions of objective probability, ev-
idence, and subjective probability into a coherent
package and is interpretable from all three perspec-
tives. For example, if the Bayes factor for the null
hypothesis compared with another hypothesis is 1/2,
the meaning can be expressed in three ways.

1. Objective probability: The observed results are
half as probable under the null hypothesis as they
are under the alternative.

2. Inductive evidence: The evidence supports the
null hypothesis half as strongly as it does the alter-
native.

3. Subjective probability: The odds of the null
hypothesis relative to the alternative hypothesis af-
ter the experiment are half what they were before
the experiment.

The Bayes factor differs in many ways from a
P value. First, the Bayes factor is not a probability
itself but a ratio of probabilities, and it can vary
from zero to infinity. It requires two hypotheses,
making it clear that for evidence to be against the
null hypothesis, it must be for some alternative.
Second, the Bayes factor depends on the probability
of the observed data alone, not including unobserved
“long run” results that are part of the P value calcu-
lation. Thus, factors unrelated to the data that affect
the P value, such as why an experiment was stopped,
do not affect the Bayes factor (8, 9).

Because we are so accustomed to thinking of
“evidence” and the probability of “error” as synon-
ymous, it may be difficult to know how to deal with
a measure of evidence that is not a probability. It is
helpful to think of it as analogous to the concept of

energy. We know that energy is real, but because it
is not directly observable, we infer the meaning of a
given amount from how much it heats water, lifts a
weight, lights a city, or cools a house. We begin to
understand what “a lot” and “a little” mean through
its effects. So it is with the Bayes factor: It modifies
prior probabilities, and after seeing how much
Bayes factors of certain sizes change various prior
probabilities, we begin to understand what repre-
sents strong evidence, and weak evidence.

Table 1 shows us how far various Bayes factors
move prior probabilities, on the null hypothesis, of
90%, 50%, and 25%. These correspond, respective-
ly, to high initial confidence in the null hypothesis,
equivocal confidence, and moderate suspicion that
the null hypothesis is not true. If one is highly con-
vinced of no effect (90% prior probability of the
null hypothesis) before starting the experiment, a
Bayes factor of 1/10 will move one to being equiv-
ocal (47% probability on the null hypothesis), but if
one is equivocal at the start (50% prior probability),
that same amount of evidence will be moderately con-
vincing that the null hypothesis is not true (9% pos-
terior probability). A Bayes factor of 1/100 is strong
enough to move one from being 90% sure of the
null hypothesis to being only 8% sure.

As the strength of the evidence increases, the
data are more able to convert a skeptic into a
believer or a tentative suggestion into an accepted
truth. This means that as the experimental evidence
gets stronger, the amount of external evidence
needed to support a scientific claim decreases. Con-
versely, when there is little outside evidence sup-
porting a claim, much stronger experimental evidence
is required for it to be credible. This phenomenon can
be observed empirically, in the medical community’s
reluctance to accept the results of clinical trials that
run counter to strong prior beliefs (10, 11).

Bayes Factors and Meta-Analysis

There are two dimensions to the “evidence-based”
properties of Bayes factors. One is that they are a
proper measure of quantitative evidence; this issue
will be further explored shortly. The other is that
they allow us to combine evidence from different
experiments in a natural and intuitive way. To under-
stand this, we must understand a little more of the
theory underlying Bayes factors (12–14).

Every hypothesis under which the observed data
are not impossible can be said to have some evi-
dence for it. The strength of this evidence is pro-
portional to the probability of the data under that
hypothesis and is called the likelihood of the hypoth-
esis. This use of the term “likelihood” must not be
confused with its common language meaning of

Table 1. Final (Posterior) Probability of the Null
Hypothesis after Observing Various Bayes
Factors, as a Function of the Prior Probability of
the Null Hypothesis

Strength
of Evidence

Bayes Factor Decrease in Probability
of the Null Hypothesis

From To No
Less Than

%

Weak 1/5 90 64*
50 17
25 6

Moderate 1/10 90 47
50 9
25 3

Moderate to strong 1/20 90 31
50 5
25 2

Strong to very strong 1/100 90 8
50 1
25 0.3

* Calculations were performed as follows:
A probability (Prob) of 90% is equivalent to an odds of 9, calculated as Prob/(1 2 Prob).
Posterior odds 5 Bayes factor 3 prior odds; thus, (1/5) 3 9 5 1.8.
Probability 5 odds/(1 1 odds); thus, 1.8/2.8 5 0.64.
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probability (12, 13). Mathematical likelihoods have
meaning only when compared to each other in the
form of a ratio (hence, the likelihood ratio), a ratio
that represents the comparative evidential support
given to two hypotheses by the data. The likelihood
ratio is the simplest form of Bayes factor.

The hypothesis with the most evidence for it has
the maximum mathematical likelihood, which means
that it predicts the observed data best. If we observe
a 10% difference between the cure rates of two
treatments, the hypothesis with the maximum like-
lihood would be that the true difference was 10%.
In other words, whatever effect we are measuring,
the best-supported hypothesis is always that the un-
known true effect is equal to the observed effect.
Even when a true difference of 10% gets more
support than any other hypothesis, a 10% observed
difference also gives a true difference of 15% some
support, albeit less than the maximum (Figure).

This idea—that each experiment provides a certain
amount of evidence for every underlying hypothe-
sis—is what makes meta-analysis straightforward un-
der the Bayesian paradigm, and conceptually different
than under standard methods. One merely combines
the evidence provided by each experiment for each
hypothesis. With log Bayes factors (or log likeli-
hoods), this evidence can simply be added up (15–
17).

With standard methods, quantitative meta-analy-
sis consists of taking a weighted average of the ob-
served effects, with weights related to their precision.
For example, if one experiment finds a 10% difference
and another finds a 20% difference, we would average
the numbers 10% and 20%, pool their standard er-
rors, and calculate a new P value based on the average
effect and pooled standard error. The cumulative evi-
dence (P value) for the meta-analytic average has
little relation to the P values for the individual
effects, and averaging the numbers 10% and 20%
obscures the fact that both experiments actually
provide evidence for the same hypotheses, such as a
true 15% difference. Although it might be noted
that a 15% difference falls within the confidence
intervals of both experiments, little can be done
quantitatively or conceptually with that fact. So
while meta-analysts say they are combining evidence
from similar studies, standard methods do not have a
measure of evidence that is directly combined.

Of Bayes Factors and P Values

If we are to move away from P values and to-
ward Bayes factors, it is helpful to have an “ex-
change rate”—a relation between the new unit of
measurement and the old. With a few assumptions,
we can make this connection. First, to compare like

with like, we must calculate the Bayes factor for the
same hypothesis for which the P value is being cal-
culated. The P value is always calculated by using
the observed difference, so we must calculate the
Bayes factor for the hypothesis that corresponds to
the observed difference, which we showed earlier
was the best-supported hypothesis. Second, because
a smaller P value means less support for the null
hypothesis (or more evidence against it), we must
structure the Bayes factor the same way, so that a
smaller Bayes factor also means less support for the
null hypothesis. This means putting the likelihood
of the null hypothesis in the numerator and the
likelihood of an alternative hypothesis in the de-
nominator. (Whether the null hypothesis likelihood
is in the top or bottom of the ratio depends on the
context of use.) If we put the evidence for the
best-supported hypothesis in the denominator, the
resulting ratio will be the smallest possible Bayes
factor with respect to the null hypothesis. This re-
ciprocal of the maximum likelihood ratio is also
called the standardized likelihood. The minimum
Bayes factor (or minimum likelihood ratio) is the
smallest amount of evidence that can be claimed for
the null hypothesis (or the strongest evidence against
it) on the basis of the data. This is an excellent bench-
mark against which to compare the P value.

The simplest relation between P values and
Bayes factors exists when statistical tests are based
on a Gaussian approximation, which is the case for
most statistical procedures found in medical jour-
nals. In that situation, the minimum Bayes factor
(the minimum likelihood ratio) is calculated with
the same numbers used to calculate a P value (13,
18, 19). The formula is as follows (see Appendix I
for derivation):

Minimum Bayes factor 5 e2Z2/2

Figure. Calculation of a Bayes factor (likelihood ratio) for the null
hypothesis versus two other hypotheses: the maximally supported
alternative hypothesis (change D 5 10%) and an alternative hypoth-
esis with less than the maximum support (D 5 15%). The likelihood of
the null hypothesis (L0) divided by the likelihood of the best supported
hypothesis (L10%), is the minimum likelihood ratio or minimum Bayes factor,
the strongest evidence against the null hypothesis. The corresponding ratio
for the hypothesis D 5 15% results in a larger ratio, which means that the
evidence against the null hypothesis is weaker.
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where z is the number of standard errors from the
null effect. This formula can also be used if a t-test
(substituting t for Z) or a chi-square test (substitut-
ing the chi-square value for Z2) is done. The data
are treated as though they came from an experi-
ment with a fixed sample size.

This formula allows us to establish an exchange
rate between minimum Bayes factors and P values
in the Gaussian case. Table 2 shows the minimum
Bayes factor and the standard P value for any given
Z score. For example, when a result is 1.96 standard
errors from its null value (that is, P 5 0.05), the
minimum Bayes factor is 0.15, meaning that the null
hypothesis gets 15% as much support as the best-
supported hypothesis. This is threefold higher than
the P value of 0.05, indicating that the evidence
against the null hypothesis is not nearly as strong as
“P 5 0.05” suggests.

Even when researchers describe results with a P
value of 0.05 as being of borderline significance, the
number “0.05” speaks louder than words, and most
readers interpret such evidence as much stronger
than it is. These calculations show that P values of
0.05 (corresponding to a minimum Bayes factor of
0.15) represent, at best, moderate evidence against
the null hypothesis; those between 0.001 and 0.01
represent, at best, moderate to strong evidence; and
those less than 0.001 represent strong to very strong
evidence. When the P value becomes very small, the
disparity between it and the minimum Bayes factor
becomes negligible, confirming that strong evidence
will look strong regardless of how it is measured.

The right-hand part of Table 2 uses this relation
between P values and Bayes factors to show the
maximum effect that data with various P values

would have on the plausibility of the null hypothe-
sis. If one starts with a chance of no effect of 50%,
a result with a minimum Bayes factor of 0.15 (cor-
responding to a P value of 0.05) can reduce confi-
dence in the null hypothesis to no lower than 13%.
The last row in each entry turns the calculation
around, showing how low initial confidence in the
null hypothesis must be to result in 5% confidence
after seeing the data (that is, 95% confidence in a
non-null effect). With a P value of 0.05 (Bayes
factor $ 0.15), the prior probability of the null hy-
pothesis must be 26% or less to allow one to con-
clude with 95% confidence that the null hypothesis
is false. This calculation is not meant to sanctify the
number “95%” in the Bayesian approach but rather
to show what happens when similar benchmarks are
used in the two approaches.

These tables show us what many researchers
learn from experience and what statisticians have
long known; that the weight of evidence against the
null hypothesis is not nearly as strong as the mag-
nitude of the P value suggests. This is the main rea-
son that many Bayesian reanalyses of clinical trials
conclude that the observed differences are not likely
to be true (4, 20, 21). They conclude this not always
because contradictory prior evidence outweighed
the trial evidence but because the trial evidence,
when measured properly, was not very strong in the
first place. It also provides justification for the judg-
ment of many experienced meta-analysts who have
suggested that the threshold for significance in a
meta-analysis should be a result more than two
standard errors from the null effect rather than two
(22, 23).

The theory underlying these ideas has a long
history. Edwards (2) traces the concept of mathe-
matical likelihood into the 18th century, although
the name and full theoretical development of like-
lihood didn’t occur until around 1920, as part of
R.A. Fisher’s theory of maximum likelihood. This
was a frequentist theory, however, and Fisher did
not acknowledge the value of using the likelihood
directly for inference until many years later (24).
Edwards (14) and Royall (13) have built on some of
Fisher’s ideas, exploring the use of likelihood-based
measures of evidence outside of the Bayesian par-
adigm. In the Bayesian realm, Jeffreys (25) and
Good (6) were among the first to develop the the-
ory behind Bayes factors, with the most comprehen-
sive recent summary being that of Kass (26). The
suggestion that the minimum Bayes factor (or min-
imum likelihood ratio) could be used as a report-
able index appeared in the biomedical literature at
least as early as 1963 (19). The settings in which
Bayes factors differ from likelihood ratios are dis-
cussed in the following section.

Table 2. Relation between Fixed Sample Size P Values
and Minimum Bayes Factors and the Effect of
Such Evidence on the Probability of the Null
Hypothesis

P Value
(Z Score)

Minimum
Bayes Factor

Decrease in Probability of
the Null Hypothesis, %

Strength of
Evidence

From To No Less Than

0.10 0.26 75 44 Weak
(1.64) (1/3.8) 50 21

17 5

0.05 0.15 75 31 Moderate
(1.96) (1/6.8) 50 13

26 5

0.03 0.095 75 22 Moderate
(2.17) (1/11) 50 9

33 5

0.01 0.036 75 10 Moderate to strong
(2.58) (1/28) 50 3.5

60 5

0.001 0.005 75 1 Strong to very strong
(3.28) (1/216) 50 0.5

92 5
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Bayes Factors for Composite Hypotheses

Bayes factors larger than the minimum values
cited in the preceding section can be calculated (20,
25–27). This is a difficult technical area, but it is
important to understand in at least a qualitative way
what these nonminimum Bayes factors measure and
how they differ from simple likelihood ratios.

The definition of the Bayes factor is the proba-
bility of the observed data under one hypothesis di-
vided by its probability under another hypothesis. Typ-
ically, one hypothesis is the null hypothesis of no
difference. The other hypothesis can be stated in many
ways, such as “the cure rates differ by 15%.” That is
called a simple hypothesis because the difference (15%)
is specified exactly. The null hypothesis and best-sup-
ported hypothesis are both simple hypotheses.

Things get more difficult when we state the al-
ternative hypothesis the way it is usually posed: for
example, “the true difference is not zero” or “the
treatment is beneficial.” This hypothesis is called a
composite hypothesis because it is composed of many
simple hypotheses (“The true difference is 1%, 2%,
3%. . . ,”). This introduces a problem when we want
to calculate a Bayes factor, because it requires cal-
culating the probability of those data under the
hypothesis, “The true difference is 1%, 2%, 3%. . . .”
This is where Bayes factors differ from likelihood ra-
tios; the latter are generally restricted to comparisons
of simple hypotheses, but Bayes factors use the ma-
chinery of Bayes theorem to allow measurement of
the evidence for composite hypotheses.

Bayes theorem for composite hypotheses involves
calculating the probability of the data under each
simple hypothesis separately (difference 5 1%, dif-
ference 5 2%, and so on) and then taking an aver-
age. In taking an average, we can weight the com-
ponents in many ways. Bayes theorem tells us to use
weights defined by a prior probability curve. A prior
probability curve represents the plausibility of every
possible underlying hypothesis, on the basis of evi-
dence from sources other than the current study.
But because prior probabilities can differ between
individual persons, different Bayes factors can be
calculated from the same data.

Different Questions, Different Answers

It may seem that the fact that the same data can
produce different Bayes factors undermines the ini-
tial claim that Bayesian methods offer an objective
way to measure evidence. But deeper examination
shows that this fact is really a surrogate for the
more general problem of how to draw scientific
conclusions from the totality of evidence. Applying
different weights to the hypotheses that make up a
composite hypothesis does not mean that different
answers are being produced for the same evidential

question; it means that different questions are being
asked. For example, in the extreme, if we put all of
the weight on treatment differences near 5%, the
question about evidence for a nonzero treatment
difference becomes a question about evidence for a
5% treatment difference alone. An equal weighting
of all hypotheses between 5% and 20% would pro-
vide the average evidence for a difference in that
range, an answer that would differ from the average
evidence for all hypotheses between 1% and 25%,
even though all of these are nonzero differences.

Thus, the problem in defining a unique Bayes
factor (and therefore a unique strength of evidence)
is not with the Bayesian approach but with the fuzzi-
ness of the questions we ask. The question “How
much evidence is there for a nonzero difference?”
is too vague. A single nonzero difference does not
exist. There are many nonzero differences, and our
background knowledge is usually not detailed enough
to uniquely specify their prior plausibility. In prac-
tical terms, this means that we usually do not know
precisely how big a difference to expect if a treat-
ment or intervention “works.” We may have an
educated guess, but this guess is typically diffuse and
can differ among individuals on the basis of the
different background information they bring to the
problem or the different weight that they put on
shared information. If we could come up with gen-
erally accepted reasons that justify a unique plausi-
bility for each underlying truth, these reasons would
constitute a form of explanation. Thus, the most
fundamental of statistical questions—what is the
strength of the evidence?—is related to the funda-
mental yet most uncertain of scientific questions—
how do we explain what we observe?

This fundamental problem—how to interpret and
learn from data in the face of gaps in our substan-
tive knowledge—bedevils all technological approaches
to the problem of quantitative reasoning. The ap-
proaches range from evasion of the problem by con-
sidering results in aggregate (as in hypothesis test-
ing), solutions that leave background information
unquantified (Fisher’s idea for P values), or repre-
sentation of external knowledge in an idealized and
imperfect way (Bayesian methods).

Proposed Solutions
Acknowledging the need for a usable measure of

evidence even when background knowledge is in-
complete, Bayesian statisticians have proposed many
approaches. Perhaps the simplest is to conduct a
sensitivity analysis; that is, to report the Bayes fac-
tors produced by a range of prior distributions, rep-
resenting the attitudes of enthusiasts to skeptics (28,
29). Another solution, closely related, is to report
the smallest Bayes factor for a broad class of prior
distributions (30), which can have a one-to-one re-
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lation with the P value, just as the minimum Bayes
factor does in the Gaussian case (31). Another ap-
proach is to use prior distributions that give roughly
equal weight to each of the simple hypotheses that
make up the composite hypothesis (25, 26, 32), al-
lowing the data to speak with a minimal effect of a
prior distribution. One such index, the Bayesian in-
formation criterion, for which Kass (26) makes a
strong case, is closely related to the minimum Bayes
factor, with a modification for the sample size. Fi-
nally, there is the approach outlined here: not to
average at all, but to report the strongest Bayes
factor against the null hypothesis.

Beyond the Null Hypothesis
Many statisticians and scientists have noted that

testing a hypothesis of exact equivalence (the null
hypothesis) is artificial because it is unlikely to be
exactly true and because other scientific questions
may be of more interest. The Bayesian approach
gives us the flexibility to expand the scope of our
questions to, for example, “What is the evidence
that the treatment is harmful?” instead of “What is
the evidence that the treatment has no effect?”
These questions have different evidential answers
because the question about harm includes all treat-
ment differences that are not beneficial. This
changes the null hypothesis from a simple hypoth-
esis (a difference of 0) into a composite hypothesis
(a difference of zero or less). When this is done,
under certain conditions, the one-sided P value can
reasonably approximate the Bayes factor (33, 34).
That is, if we observe a one-sided P value of 0.03
for a treatment benefit and give all degrees of harm
the same initial credibility as all degrees of benefit,
the Bayes factor for treatment harm compared with
benefit is approximately 0.03. The minimum Bayes
factor for no treatment effect compared with benefit
would still be 0.095 (Table 2).

Objectivity of the Minimum Bayes Factor

The minimum Bayes factor is a unique function
of the data that is at least as objective as the P val-
ue. In fact, it is more objective because it is unaf-
fected by the hypothetical long-run results that can
make the P value uncertain. In the first article (1),
I presented an example in which two different P val-
ues (0.11 and 0.03) were calculated from the same
data by virtue of the different mental models of the
long run held by two researchers. The minimum
Bayes factor would be 0.23, identical for both sci-
entists’ approaches (Appendix 2). This shows us
again how P values can overstate the evidence, but
more important, it vindicates our intuition that the
identical data should produce identical evidence.

This example is important in understanding two
problems that plague frequentist inference: multiple
comparisons and multiple looks, or, as they are more
commonly called, data dredging and peeking at the
data. The frequentist solution to both problems in-
volves adjusting the P value for having looked at the
data more than once or in multiple ways. But ad-
justing the measure of evidence because of consid-
erations that have nothing to do with the data defies
scientific sense (8, 35–41), belies the claim of “ob-
jectivity” that is often made for the P value, and
produces an undesirable rigidity in standard trial
design. From a Bayesian perspective, these problems
and their solutions are viewed differently; they
are caused not by the reason an experiment was
stopped but by the uncertainty in our background
knowledge. The practical result is that experimental
design and analysis is far more flexible with Bayes-
ian than with standard approaches (42).

External Evidence

Prior probability distributions, the Bayesian method
for representing background knowledge, are some-
times derided as representing opinion, but ideally
this opinion should be evidence-based. The body of
evidence used can include almost all of the factors
that are typically presented in a discussion section
but are not often formally integrated with the quan-
titative results. It is not essential that an investigator
know of all of this evidence before an experiment.
This evidence can include the following:

1. The results of similar experiments.
2. Experiments studying associations with similar

underlying mechanisms.
3. Laboratory experiments directly studying the

mechanism of the purported association.
4. Phenomena seen in other experiments that

would be explained by this proposed mechanism.
5. Patterns of intermediate or surrogate end

points in the current experiment that are consistent
with the proposed mechanism.

6. Clinical knowledge based on other patients
with the same disease or on other interventions with
the same proposed mechanism.

Only the first of these types of evidence involves
a simple comparison or summation of results from
similar experiments, as in a meta-analysis. All of the
others involve some form of extrapolation based on
causal reasoning. The use of Bayes factors makes it
clear that this is necessary in order to draw conclu-
sions from the statistical evidence.

Use of the Bayes Factor

We will now use two statements from the results
sections of hypothetical reports to show the mini-
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mum Bayes factor can be used to report and inter-
pret evidence.

Hypothetical Statement 1

The difference in migraine relief rates between
the experimental herbal remedy and placebo groups
(54% compared with 40% [CI for difference, 22%
to 30%]) was not significant (P 5 0.09).

Bayesian data interpretation 1: The P value of 0.09
(Z 5 1.7) for the difference in migraine relief rates
corresponds to a minimum Bayes factor of e21.72/2 5
1⁄4 for the null hypothesis. This means that these
data reduce the odds of the null hypothesis by at
most a factor of 4, fairly modest evidence for the
efficacy of this treatment. For these data to produce
a final null hypothesis probability of 5%, the exter-
nal evidence supporting equivalence must justify a
prior probability of equivalence less than 17%. But
no mechanism has been proposed yet for this herbal
migraine remedy, and all previous reports have con-
sisted of case studies or anecdotal reports of relief.
This a priori support is weak and does not justify a
prior probability less than 50%. The evidence from
this study is therefore insufficient for us to conclude
that the proposed remedy is effective.

Bayesian data interpretation 2: . . . For these data
to produce a final null hypothesis probability of 5%,
the external evidence supporting equivalence must
justify a prior probability of equivalence less than
17%. However, the active agent in this remedy is in
the same class of drugs that have proven efficacy in
migraine treatment, and this agent has been shown
to have similar vasoactive effects both in animal mod-
els and in preclinical studies in humans. Three un-
controlled studies have all shown relief rates in the
range seen here (50% to 60%), and the first small
randomized trial of this agent showed a significant
effect (60% compared with 32%; P 5 0.01). The bio-
logical mechanism and observed empirical evidence
seem to justify a prior probability of ineffectiveness
of 15% to 25%, which this evidence is strong enough
to reduce to 4% to 8%. Thus, the evidence in this
trial, in conjunction with prior findings, is strong
enough for us to conclude that this herbal agent is
likely to be effective in relieving migraine.

Hypothetical Statement 2

Among the 50 outcomes examined for their re-
lation with blood transfusions, only nasopharyngeal
cancer had a significantly elevated rate (relative
risk, 3.0; P 5 0.01).

Bayesian data interpretation: The minimum Bayes
factor for relative risk of 1.0 compared with a rel-
ative risk not equal to 1.0 for nasopharyngeal cancer
is 0.036. This is strong enough to reduce a starting
probability on the null hypothesis from at most 59%
to 5%. However, there is no previous evidence for

such an association or of a biological mechanism to
explain it. In addition, rates of cancers with similar
risk factor profiles and molecular mechanisms were
not elevated, meaning that blood transfusion would
have to produce its effect by means of a mechanism
that differs from any other previously identified causes
of this cancer. Previous studies of blood transfusions
have not reported this association, and there have
been no reports of increased incidence of nasopha-
ryngeal cancer among populations who undergo re-
peated transfusions. Therefore, prior evidence sug-
gests that the probability of the null hypothesis is
substantially higher than 60%. A minimum Bayes
factor of 0.036 means that this result can reduce a
85% prior probability to no lower than 17% and a
95% prior probability to no lower than 41%. There-
fore, more evidence than that provided by this study
is needed to justify a reliable conclusion that blood
transfusion increases the risk for nasopharyngeal
cancer. However, future studies should explore this
relation and its potential mechanisms.

Discussion

The above examples do not nearly represent full
Bayesian interpretation sections, which might use a
range of prior distributions to define a range of
Bayes factors, or use priors that have been elicited
from experts (29, 43, 44). These scenarios do, how-
ever, illustrate a few essential facts. First, this mea-
sure of evidence can usually be easily calculated
from the same information used to calculate a P val-
ue or confidence interval and thus can be implement-
ed without specialized software or extensive statis-
tical expertise. Some expertise is needed to assure
that the Gaussian approximation underlying the for-
mula applies in a particular situation. When it doesn’t
apply, many standard software programs report some
function of the exact likelihood (typically, its loga-
rithm), from which it is not hard for a statistician to
calculate the minimum Bayes factor. Its independence
from prior probabilities can also help overcome the
reluctance of many investigators to abandon what
they regard as objective statistical summaries.

More important, these examples highlight how this
index can help keep the statistical evidence distinct
from the conclusions, while being part of a calculus
that formally links them. The first example showed
how the same quantitative results could be included
in discussions that came to different conclusions. The
explicitness of this process encourages debate about
the strength of the supporting evidence. As outlined
in the first article, standard methods discourage this
because they offer no way to combine supporting ev-
idence with a study’s P values or confidence intervals.

These examples demonstrate how the minimum
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Bayes factor enables simple threshold Bayesian anal-
yses to be performed without a formal elicitation of
prior probability distributions. One merely has to
argue that the prior probability of the null hypoth-
esis is above or below a threshold value, on the ba-
sis of the evidence from outside the study. If the
strongest evidence against the null hypothesis (the
minimum Bayes factor) is not strong enough to
sufficiently justify a conclusion, then the weaker evi-
dence derived from a Bayes factor from a full Baye-
sian analysis will not be either.

The use of the minimum Bayes factor does not
preclude a formal Bayesian analysis and indeed might
be an entrée to one. Recent reviews and books
outline how full Bayesian analyses can be conducted
and reported (21, 29, 45–50). Bayesian results can
also be extended into formal decision analyses (51).
The availability of user-friendly software for Baye-
sian calculations (52) makes implementation of this
method more practicable now than in the past.

In not using a proper Bayesian prior probability
distribution, the minimum Bayes factor represents a
compromise between Bayesian and frequentist per-
spectives, which can be criticized from both camps.
Some statisticians might deride the minimum Bayes
factor as nothing more than a relabelled P value.
But as I have tried to show, P values and Bayes
factors are far more than just numbers, and moving
to Bayes factors of any kind frees us from the
flawed conceptual framework and improper view of
the scientific method that travels with the P value.

The Bottom Line: Both Perspectives Are
Necessary, but P Values Are Not

Standard frequentist methods are most problem-
atic when used to draw conclusions in a single ex-
periment. Their denial of a formal role for external
information in inference poses serious practical and
logical problems. But Bayesian methods, designed
for inductive inference in single experiments, do not
guarantee that in the long run, conclusions in which
we have 95% confidence will turn out to be true
95% of the time (53). This is because Bayesian
prior probability distributions are not ideal quantita-
tive descriptors of what we know (or what we don’t
know) (54, 55), and Bayes theorem is an imperfect
model for human learning (54, 56). This means that
the frequentist, long-run perspective cannot be com-
pletely ignored, leading many statisticians to empha-
size the importance of using frequentist criteria in the
evaluation of Bayesian and likelihood methods (6, 13,
32, 53), which these methods typically fulfill quite well.

In the end, we must recognize that there is no
automatic method in statistics, as there is not in life,
that allows us both to evaluate individual situations

and know exactly what the long-run consequences
of that evaluation will be. The connection between
inference in individual experiments and the number
of errors we make over time is not found in the P
value or in hypothesis tests. It is found only in
properly assessing the strength of evidence from an
experiment with Bayes factors and uniting this with
a synthesis of all of the other scientific information
that bears on the question at hand. There is no
formula for performing that synthesis, nor is there a
formula for assigning a unique number to it. That is
where room for meaningful scientific discourse lies.

Sir Francis Bacon, the writer and philosopher
who was one of the first inductivists, commented on
the two attitudes with which one can approach na-
ture. His comment could apply to the perspectives
contrasted in these essays: “If we begin with cer-
tainties, we shall end in doubts; but if we begin with
doubts, and are patient with them, we shall end with
certainties” (57). Putting P values aside, Bayesian
and frequentist approaches each provide an essen-
tial perspective that the other lacks. The way in which
we balance their sometimes conflicting demands is
what makes the process of learning from nature cre-
ative, exciting, uncertain, and, most of all, human.

Appendix I

Derivation of the minimum Bayes factor under a Gauss-
ian distribution: The likelihood of a hypothesis given an ob-
served effect, x, is proportional to the probability of x under
that hypothesis. For a Gaussian distribution, the hypothe-
sis typically concerns the mean. The probability of x under
a Gaussian distribution with true mean 5 m and standard
error 5 s, is (where the symbol “u” is read as “given”):

Pr(xu m, s) 5
1

sÎ2p
e

2Sx2m

s
D2

Y2

Because the exponent is negative, the above probabil-
ity is maximized when the exponent is zero, which occurs
when m 5 x (that is, the true mean m equals the observed
effect, x). The likelihood ratio for the null hypothesis (m 5 0)
versus the maximally supported hypothesis (m 5 x) is the
minimum Bayes factor:

Pr(xu m 5 0,s)
Pr(xu m 5 x,s) 5

1
sÎ2p

e
2Sx20

s
D2

Y2

1
sÎ2p

e
2Sx2x

s
D

2

Y2

5 e
2Sx

s
D2

Y2

Because the Z-score is the observed effect, x, divided by
its standard error, s, the final term in the above equation is:

e
2Sx

s
D2Y2 5 e2Z2/2
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Appendix II

In the example posed in the first article (1), two treat-
ments, called A and B, were compared in the same pa-
tients, and the preferred treatment in each patients was
chosen. The two experimenters had different mindsets
while conducting the experiment: one planned to study all
six patients, whereas the other planned to stop as soon as
treatment B was preferred. The first five patients pre-
ferred treatment A, and the sixth preferred treatment B.

The probability of the data under the two hypotheses
is as follows.

Null hypothesis: Probability that treatment A is pre-
ferred 5 1/2

Alternative hypothesis: Probability that treatment A is
preferred 5 5/6

In the “n 5 6” experiment, this ratio is:

6S1

2D
5S1

2D
1Y6S5

6D
5S1

6D
1

5 0.23

The “6” appears above because the preference for treat-
ment B could have occurred in any of the first five pa-
tients or in the sixth patient without a change in the
inference.

In the “stop at first preference for treatment B” ex-
periment, the ratio is:

S1

2D
5S1

2D
1YS5

6D
5S1

6D
1

5 0.23
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