Transforming Clinical Trials: The I-SPY TRIAL Process

Laura Esserman MD MBA

- Don Berry, PhD
- Jane Perlmutter, PhD

Prepared for the Biomarker Steering Committee

<u>Sept</u> 29, 2009

Drug Development – Current Model

- One FDA-Approved Drug Start to Finish
 - 10- 15 Years
 - 1,000 6,000 Volunteers
 - \$1 Billion

It Is Time to Implement a More Efficient Clinical Trial Process

Inefficient clinical trials account for a majority for the time and cost associated with the failures of the current system

- Reduce time to conclusive results/Accelerate learning
- Reduce patient s/volunteers required
- Reduce cost of conducting trials
- Increase collaboration/Data sharing

Design Trials with the Future in Mind

Principle	Solution
Test agents where they matter most	 Neoadjuvant setting, poor prognosis cancers Integrate advocates into trial planning
Rapidly learn to tailor agents	 Adaptive Design Neoadjuvant therapy Integration of biomarkers. imaging
Optimize Phase 3 trials	Graduate drugs with predicted probability of success in Phase 3 trials for given biomarker profile
Drive Organizational Efficiency	 Adaptive Design Master IND Test drugs by class, across many companies Shared cost of profiling Financial support separated from drug supply Shared IT Infrastructure, caBIG
Use Team Approach	 Democratize access to data Share credit and opportunity Collaborative process for development

Neoadjuvant Approach Building on I-SPY 1

CALGB INTERSPORE ACRIN NCICB CALGB 150012/150007 and ACRIN 6657

Investigation of Serial studies to Predict **ISPY** Your WITH MY LITTLE Therapeutic EYE Response with . . A BIO-MARKER Imaging and Molecular **BEGIN-ING WITH** Ana-X Lvsis

I-SPY 1 Clinical Trial Backbone CALGB 150007 / ACRIN 6657

Layered Imaging and Molecular Biomarker Studies Onto Standard Clinical Care

Observations from I-SPY 1

- Patients in I-SPY are the very patients most at risk, who need novel strategies to improve survival
 - -90% of I SPY patients had poor risk biology
 - Therapies save lives in the adjuvant but not metastatic setting
- pCR (and RCB) are highly predictive of outcome in context of poor risk biology
- MRI Volume change is emerging as a noninvasive way to predict pCR

Rapidly Learn to Tailor Agents

Adaptive Design, Integration of Biomarkers

I-SPY 2 Applies Findings, Infrastructure of I-SPY 1 to Testing of New Agents

- Introduction of phase 2 agents into the neoadjuvant setting in breast cancer
- Adaptive clinical trial design
- Process for rapid, focused clinical development of oncologic therapies and biomarkers
- High potential for both accelerating development of new therapies and benefiting patients

I-SPY 2 Adaptive Trial Outline

Accrual: Anticipate 800 patients over 3–4 years

Enroll: ~20 patients per month

Participating Sites: 15–20 across US and Canada

I-SPY 2 Adaptive Trial Schema: Screening & Randomization

I-SPY 2 Adaptive Trial: Introduce several new agents for a given profile

I-SPY 2 Adaptive Trial: Learn, Drop, Graduate, and Replace Agents Over Time

I-SPY 2 is a Paradigm Shift

- Uses adaptive design in neoadjuvant setting to allow efficient learning,
 - pCR is primary endpoint
- Biomarkers, imaging and pathology endpoints help drive trial
- Qualifies biomarkers as new agent classes are tested
 - Established/ Approved Biomarkers/ IDE Biomarkers
 - Qualifying Biomarkers
 - Exploratory Biomarkers (
- Provides foundation of evidence for tailoring therapy

Optimize Chance of Successful Phase 3 Trials For targeted population

Advantages of Adaptive Design

If the drug works better or worse than you think, you will learn that as the trial progresses

 Drugs can be dropped quickly if they are ineffective or harmful, or graduated sooner if they are clearly beneficial

Smaller trials (usually), more accurate conclusions, better treatment of patients in the trial

Statistical Considerations

- Primary endpoint: pCR (at surgery)
- Auxiliary endpoints: MRI volume over time
- (MRI not relevant in final analysis)
- Baseline covariates: ER, HER2, MP

I-SPY2 Statistical Goals

- Identify (baseline) biomarker signatures that predict drug effect on pCR
- Model relationships between baseline and longitudinal MRI to predict pCR
- Confirm observations within trial—at least partially

Graduate drug/biomarker pairs to smaller, more focused Phase 3 trials

Patient Strata

Estimated prevalences based on I-SPY 1:

	MP-		MP+		
	HR+ HR–		HR+ HR–		
HER2+	16%	7%	4%	10%	
HER2–	23%	6%	6%	28%	

MP: MammaPrint High+ vs High-HR+: Hormone Receptor+: Either ER+ or PgR+

pCR by subtype in I-SPY1*; null case in designing I-SPY2

	MP–		MP+	
	HR+	HR–	HR+	HR–
HER2+	0.47	0.67	0.35	0.55
HER2–	0.25	0.43	0.17	0.32

* Patients w/o trastuzumab]

Prevalence by Subtype, again

	MP-		MP+	
	HR+ HR-		HR+ HR-	
HER2+	16%	7%	4%	10%
HER2-	23%	6%	6%	28%

Biomarker signatures

- Graduate drugs/signatures from trial:
 - Based on effectiveness
 - Based on prevalence
- Biomarker signatures (2^8 combinations of subtypes): B₁, B₂, ..., B₂₅₆
- But restrict to (10) marketable signatures:

	Μ	P-	MP+		
	HR+ HR-		HR+	HR-	
HER2+	16%	7%	4%	10%	
HER2-	23%	6%	6%	28%	

Biomarker Signatures

Biomarker		Types (HR, HER2, MP)				Estimated			
Signature	+++	++-	+-+	+	_++	-+-	+		prevalence
1 (All)	Х	Х	Х	Х	Х	Х	Х	Х	100%
2 (HR+)	Х	Х	Х	Х					49%
3 (HR-)					Х	Х	Х	Х	51%
4 (HER2+)	X	Х			X	X			37%
5 (HER2-)			Х	Х			Х	Х	63%
6 (MP+)	Х		Х		X		X		48%
7 ()*							Х	Х	34%
8 (-+)					X	Х			17%
9 (++)	X	Х							20%
10 (+-)			Х	Х					29%

*Triple negative

Sponsor/SC may restrict signatures

Adaptive Randomization

- Sample size for each drug, 20 to 120 (minimum n = 60 if "graduate")
- Maximum of 5 exp drugs at a time
- Patient enters trial, identify subtype
- Find (Bayesian) prob each drug >> control, based on all current results, including MRI
- Assign in proportion to current prob drug
 >> control (depends on subtype)

Dropping, Graduating Drugs

- Frequent updating through trial. For each drug and each possible biomarker signature B, find predictive probability of success in 300-pt Phase 3 trial
- ♦ If < 10% for all B then drop drug</p>
- If > 85% for some B then drug graduates

 At graduation we give predictive probability Phase 3 success for each B, including B on the drug's diploma Longitudinal Modeling (MRI volume is auxiliary endpoint for adaptive decision making)

 Assess predictability (depending on therapy) of pCR from interim MRI

 Based of I-SPY2 results, but "borrow" data from I-SPY1 regarding relationship

Simulations for Design Operating Characteristics

- Require completely prospective design (computationally intensive)
- For operating characteristics:
 - Type I error rate
 - Power
 - Sample size
- Many scenarios, including
 - Accrual rate
 - # exp drugs over time

Organizational Efficiencies

Master IND Accommodates Testing of Multiple agents

- Eliminates need for new protocol each time an agent is added
- Enables approval as soon as an agent is "Tier 1" ready
- Provides pharmaceutical companies a pathway for rapid development, testing of promising agents
- Provides FDA with opportunity to test more efficient process of drug qualification
- Master IND to be held by FNIH

Agent Review Process

Fall 2008

Pharmaceutical Company Focus Group

Produced broad list of candidate tier 1 and tier 2 agents

Spring 2009

I-SPY 2 Internal Agent Review of Proposed Tier 1 Agents

Produced narrowed down list of tier 1 agents plus agents deferred to tier 2

Spring 2009

I-SPY 2 Independent Agent Review of Proposed Tier 1 Agents

Produces approved list of tier 1 agents

Novel Agent Selection Criteria

Phase I testing completed

Compatible with standard paclitaxel therapy (i.e. no unacceptable additive toxicity)

For HER2/neu–directed agents, compatible with paclitaxel plus trastuzumab therapy

Known efficacy or rationale for efficacy in breast cancer

Fits strategic model for optimizing combinations of single/multiple molecular targeting drugs with or without standard chemotherapy

Targets key pathways/molecules in breast cancer:

ReceptorsHER2, IGF1R, Death Receptor, cMET, VEGFR (multi-targeted TKI)PI3K PathwaysPI3K, Akt, mTORMAPK PathwaysMEK, MAPKAngiogenesisAMG 386DNA RepairPARP

Note: Only one novel agent per target pathway will be active in the trial. The goal is to test agents by class.

Willingness of pharmaceutical company to support the trial and sufficient availability of the agent

#1 Criteria Safety with paclitaxel is known and acceptable

not disclose oject Team. October 4, 2009

Proposed Tier 1 Agents and Their Target Patient Populations

Agent	HER2+ / Any HR Cancers	HER2- / HR+ Cancers	HER2 - / HR - Cancers
ABT-888	No	Yes	Yes
Figitumumab (CP-751,871)	No	Yes	Yes
Neratinib (HKI-722)	Yes*	No	No
APO/TRAIL (AMG 655)	No	Yes	Yes
AMG 386	No	Yes	Yes

* Neratinib is anticipated to be delivered in place of trastuzumab after confirming its efficacy is at least as effective as trastuzumab in HER2+ cancers.

Additional A	gents In the	e Pipeline
	Anticipated approval: *Year end 2009 *First quarter 2010	
HER2 Inhibitors	T-DM1* (Genentech) Pertuzumab (Genentech)	
IGFR Inhibitors	OSI-906 – TKI (Imclone/Sche	ring-Plough)
Multi-Targeted TKI	Bosutunib (Wyeth) Motesanib Diphosphate (An	ngen)
Others	PI3K* (Genentech) Akt* (Merck) Aurora A inhibitors* (M NOTCH (Oncomed/GSK) Hedgehog (Genentech) cMET (Amgen, Genentech, GSI Bcl2 (Abbott)) MEK (GSK)	<mark>erck)</mark> K) (/
		iadaaa

Additional Organizational Efficiencies

- Work designed to meet the ambitious goal of opening trial November 2009
- Simultaneous development
 - IT system for real time web based data capture, integrated with research tools
 - caTISSUE, caEXCHANGE
 - Randomization engine to support adaptive design
 - caINTEGRATOR2 to enable sharing data
 - Protocol development, iterative feedback (IRB's)
 - Qualification of agents, biomarkers
 - Site selection

Team Approach
I-SPY 2 Process Collaborative by Design

Involve key stakeholders from inception

 NCI, FDA, FNIH Biomarkers Consortium, Academic and Clinical Partners, Pharma, Biotech, IT, Advocates

Involve new stakeholders as trial proceeds to approval

- Preparation for IRB approval: 45 key stakeholders brought together for education and feedback
- Involve stakeholders from all sites
 - "Chaperones" for agents, biomarkers from trial investigators
 - Data in caINTEGRATOR is open to all investigators

Projected I-SPY 2 study sites

I-SPY 2 TRIAL Managed by FNIH

proposed governance structure

Unprecedented Involvement & Interes 1-SPY2 of Advocates in I-SPY2

- Advocates involved in earliest thinking and planning of I-SPY2
- Advocates assigned to all I-SPY2 scientific working groups and advisory groups
- Presentations to advocates at scientific meetings and advocacy meetings (e.g., AACR, SABCS, ASCO, NBCC, SHARE, C3)
- Regular email updates to mailing list of over 120 subscribing advocates
- Multiple advocate driven project groups

Advocate Specific Projects

Value Proposition/Benefit for Partners in Public Private Partnership (PPP)

Patients	 Opportunity to Drive Path to Personalized Treatment Potentially More Effective Treatment/Management
FDA	Provides for Evidence-Based Regulatory Policy
Pharma	 More Efficient Drug Development and Approval Path Better Early Response Criteria
Device Industry	Larger MarketsLess Risk
CMS	Helps Define Reasonableness and Need
Academia/NCD	 Better Clinical Data More Effective Treatment/Management

Drug Development – Current Model

- One FDA-Approved Drug Start to Finish
 - 10- 15 Years
 - 1,000 6,000 Volunteers
 - \$1 Billion

Drug Development –I SPY Model

•5X More Products for 1/5 of the \$\$ (25X Improvement)
•½ of the time, with ½ the volunteers (4X Improvement)ⁿ

FNIH: Trusted Third Party

to ensure fair and appropriate licensing of new inventions arising from I-SPY 2

Potential Funding Sources

Identified:~\$6-8 millionTo be raised by FNIH: \$16-18 million

- Potential funding sources:
 - Safeway (~\$6 million)
 - Local store campaigns will raise funds directly for nearby sites
 - Atwater Family fund (~\$1-2 million)
- Cost per funder: ~3.5 million over 5 years, if 5 funders identified
 - Two Go/No-go milestones, at 20% and 40% of the total required budget

Current prospects for I-SPY 2 funding

For-Profit Companies

Abbott Laboratories Amgen AstraZeneca **Bristol-Myers Squibb EMD** Serono Genentech GlaxoSmithKline Johnson & Johnson Eli Lilly and Company Merck and Co., Inc. Novartis Pharmaceutical Corp. Pfizer Inc. F. Hoffmann-La Roche Wyeth

Non-Profit Organizations American Association for Cancer Research American Cancer Society American Society of Clinical Oncology Foundation American Society for Therapeutic Radiology and Oncology **Breast Cancer Research Fund Battelle Memorial Institute Biotechnology Industry Organization Coalition of Cancer Cooperative Groups Dr. Susan Love Research Foundation** Friends of Cancer Research Haseltine Foundation for Medical Sciences and the Arts Living Beyond Breast Cancer **Ontario Cancer Biomarker Network Safeway Corporation** SU₂C Susan G. Komen for the Cure ZERO Breast Cancer

2009 Start-up Funding Needed

in order to preserve current project timelines

Activities covered would include:

- •UCSF personnel
- •Personnel at other sites
- •Bridge funding for site setup
- •Legal costs for contracts/grants

Extras I SPY RESULTS

CONFIDENTIAL: Do not disclose outside the I-SPY 2 Project Team. October 4, 2009

The Project Plan:

Comprehensive approach to managing both pre-existing and new intellectual property

	Treatment of IP related to:								
	Drugs	Tools (Assay platforms)	Biomarkers						
Pre-existing IP	 Retained by contributing company Research use licenses to and NDAs with Project Team only 	Companies will provide licenses via service agreements with FNIH for use in the project	Pre-existing biomarkers (I- SPY 1)						
New IP	 E.g., novel combination regimens or indications Will be licensed back to the company (exclusively if drug-specific) 	 Companies will have no early look at or proprietary rights to data or inventions May keep proprietary tools improvements (but grant research licenses to Project Team) 	 Inventors must grant interested parties a non- exclusive license for research use, and Companies will receive option to negotiate exclusive or non-exclusive commercial license with limited field of interest 						

Summary of I-SPY 2 Data Release Plan

Type of Data	Purpose	Users	Release
Detailed patient data	Measure study progress and data quality	Investigators, PT only	Ongoing
Efficacy Data	Results	 Investigators & PT Contributing Drug Cos. Research Community 	 As drugs leave study (DSMB approval) 1 week later 6 months later
Qualifying and Exploratory Biomarkers	Results	•BWG and PIs •Investigators •Research Community	 At study completion 2 weeks later 3 months thereafter (request to DAPC)
Initial Safety Data	Determine whether to continue drug; regulatory requirements	 DSMB & PIs Contributing Drug Cos. FDA 	Ongoing for all (Drug Cos. may release some data as part of peer-reviewed manuscripts)
Follow-up Safety Data, RFS & OS (>1 yr post-treatment)	Regulatory requirements	•DSMB •Contributing Drug Cos. •FDA	Same as Initial Safety Data
Other Follow-Up Data	Results	 Investigators Research Community 	Within 3 months after completion of follow-up

The I-SPY 2 Trial will be executed over five years

Timelines Anticipate Success

Site selection	10 sites on board; Additional recruiting on-going (14 sites as of August 2009)			
Agents finalized	Tier 1 agents identified			
Protocol finalized	Undergoing review; central IRB review August 20, 2009			
IRB approval	Begin IRB approval process at 3 sites (UCSF, U Penn, UMN). Ongoing through June 2010			
IND application submission	Response within 30 days			
Contract negotiations	Initiated with 3 site (UCSF, U Penn, UMN); Ongoing			
Site/Investigator training				
First patient on-study	Open at UCSF, UPenn, UMN first, additional sites on-study ongoing through first quarter 2010			
	Site selection Agents finalized Protocol finalized IRB approval IND application submission Contract negotiations Site/Investigator training First patient on-study			

I-SPY 1 Biomarker Platforms

Tissue: Core or Surgical

H&E, IHC, FISH

UNC, Penn

Expression Arrays

p53 GeneChip

Protein Arrays (RPMA)

	0				9	Ħ	3		0		•	0	10		0	0	14	0	1.0	1
0	9	×		0	9	1			-	*										
0	ą	×,	e.	0	9	ġ,			θ	۶.		•	ø		0	9	ę	0	0	9
•	0	0		0	0	۴		•	0	8	•	Q	14		•	Ø	9			
•	0	8		0	9	A			8	Ð		0	12							
				2	4		-													
							1.4													
-	1			-	-						-									
1	0	1		-	1				-	2		1	1		-	-	1	1		
8		1				2			•						•	1		•		1
•	Ð	8		0	-	1		0	-00	*	•	0			•	*	*			*
٥	1	*			0	9		0	10			*	÷.		•	•	99	0	9	Ψ.
	0	4							0			•	٠		0		*		0	9
						4		0	0				*	-		0	4		0	
	0	0				-					1									
-	1																			

UNC

UNC, UCSF, NKI

GMU

Serum

Id1 proteins autoantibodies phospho proteins

October 4, 2009

Quantitative and serial measurement of tumor response by MRI – ACRIN 6657

CONFIDENTIAL: Do not disclose outside the I-SPY 2 Project Team. October 4, 2009

Infrastructure Builds on I SPY 1

Disparate Data Sources

I-SPY 2 Informatics Infrastructure:TRANSCEND Uses Common Tools, Enables Data Exchange

I-SPY 1: LABC are Poor Prognosis Tumors

NKI 70 Gene Profile"Good" Signature9%"Poor" Signature91%

Mean Tumor Size= 6.0 Present as clinical mass 55% < Age 50

Rates of pCR Differ Based on Biomarkers

Pathologic Complete Response (pCR)

	ER+	ER-	
HER2+	33%	50%	41%
HER2-	10%	32%	18%
	15%	37%	24%

*Excludes patients who received trastuzumab (n=20)

Effect of ER– over ER+: **22%** (p<0.01) Effect of HER2+ over HER2–: **23%** (p<0.01)

Relationship of pCR and RCB with Early Relapse for all I-SPY 1 Patients

pCR and RCB are VERY significant predictors of early relapse in the context of a poor prognosis profile

CONFIDENTIAL: Do not disclose outside the I-SPY 2 Project Team. October 4, 2009

Survival Among Basal-like Tumors

Survival Among NKI-70 High Risk

Majority of LABCS in I-SPY 1 were identified during the interval between routine screenings

Estimating Expected Interval Cancer Rates in I-SPY 1

Based on rates observed in Norrbotten Mammography Screening Program*

Age	Expected	I-SPY Age	Expected IC
-	IC Rate	Distribution	IN I-SPY
40-49	43%	34%	10
50-59	29%	53%	10
60-69	18%	13%	2
70-74	16%	0%	0

Expected IC Rate in I-SPY (22/68)

Observed IC Rate in I-SPY (57/68)

84%

32%

*Bordas, J Med Screen 2009

Morphologic Pattern

Morphologic Pattern

Results: Prediction of pCR

Predictor Variable	pCR = 0/1					
	OR	p-value				
Clin Size2/Clin Size1	1.07	0.924				
Log(LD2/LD1)	8.67	0.054				
Log(Vol2/Vol1)	19.81	<0.0001				
Peak SER2/Peak SER1	0.72	0.650				

Adaptive Design vs. Standard Statistical Design

Adaptive

- Learn from every patient as the trial proceeds, trial "learns" degree of benefit and number of patients needed for proof
 - As evidence accumulates the level of confidence in our refined belief will increase.
- The data determines the point at which the results are robust enough to conclude that the drug/device is effective or not effective

Standard

 Pre-specified number of patients based on an educated guess on how much benefit the drug will have

 Data reviewed for safety, stopping at pre-specified interim time point or the end of the trial

Qualifying Biomarker Lawrence Berkeley National Lab 60 Cell Line Analysis using the Panomics QuantiGene Plex 2.0 Assay

The participant's tumor is matched to one of the 60 cell lines using the gene expression profile determined using the Panomics QuantiGene Plex 2.0 Assay.

Qualifying Biomarker Lawrence Berkeley National Lab 60 Cell Line Analysis

Trial Preparation

Participant Treatment

60 LBNL Breast Cancer Cell Lines identified using the Panomics QuantiGene Plex 2.0 Assay.

Cell lines are evaluated based on response to agents to predict effectiveness of the agents by cell line

Biopsy is taken from the trial participant's tumor and matched to one of the 60 cell lines based on gene expression profile using the Panomics QuantiGene Plex 2.0 Assay in a CLIA certified lab.

Trial Participants are treated with an investigational agent based on trial randomization

Results of treatment on participants are evaluated

Post-Treatment Analysis

Actual participant responses are compared to predicted responses based on cell line.

CONFIDENTIAL: Do not disclose outside the I-SPY 2 Project Team.

October 4, 2009 70

Recommended Tier 1 Agents

Agent	Туре	Provider	Comments
ABT-888	PARP Inhibitor	Abbott	Data reviewed slightly out of date but has promising efficacy with low safety/toxicity concerns
Figitumumab (CP-751,871)	IGFR Inhibitor	Pfizer	
Neratinib (HKI-722)	Pan ErbB Inhibitor	Wyeth	
APO/TRAIL (AMG 655)	APO/TRAIL Agonist	Amgen	Efficacy not as promising as other candidate agents.
AMG 386	Angiopoietin Inhibitor	Amgen	Efficacy not as promising as other candidate agents.

Pre-Treatment, Early Paclitaxel & Pre-Surgery Samples

Simulations, null case (Type I error = 10%)

	Subtype	S	E1	E2	E3
	HR+HER2+MP+	0.35	0.35	0.35	0.35
	HR+HER2+MP-	0.47	0.47	0.47	0.47
	HR+HER2-MP+	0.17	0.17	0.17	0.17
Accumptio	HR+HER2-MP-	0.25	0.25	0.25	0.25
Assumptio	HR-HER2+MP+	0.55	0.55	0.55	0.55
	HR-HER2+MP-	0.67	0.67	0.67	0.67
	HR-HER2-MP+	0.32	0.32	0.32	0.32
	HR-HER2-MP-	0.43	0.43	0.43	0.43
	Subtype	<u> </u>	E1	E2	E3
	HR+HER2+MP+				
	HR+HER2+MP-				
	HR+HER2-MP+				
Average	HR+HER2-MP-				
complo	HR-HER2+MP+				
Sample	HR-HER2+MP-				
size	HR-HER2-MP+				
	HR-HER2-MP-				

imulations	F1	Subtype		S	E1	E2	E3	
		HR+HE	ER2+MP+	0.35	0.71	0.35	0.35	
effective		HR+HE	ER2+MP-	0.47	0.8	0.47	0.47	
		HR+HE	ER2-MP+	0.17	0.48	0.17	0.17	
		HR+HE	ER2-MP-	0.25	0.59	0.25	0.25	
Assun	nptio	HR-HE	R2+MP+	0.55	0.84	0.55	0.55	
		HR-HE	R2+MP-	0.67	0.9	0.67	0.67	
			HR-HER2-MP+		0.68	0.32	0.32	
		HR-HE	R2-MP-	0.43	0.77	0.43	0.43	
		True S	ignature		All	None	None	
						=	=0	I
		Subtype		5	E1	E2	E3	
		HR+HE	ER2+MP+					
		HR+H	=R2+MP-					
Ave	rade	HR+H	=R2-MP+					
		HR+HE	ER2-MP-					
sar	nple	HR-HE	R2+MP+					
e		HR-HE	R2+MP-					
ଧ		HR-HE	R2-MP+					
		HR-HE	R2-MP-					
		Total						
_						-		
Arm		P1	P2	P3	P4	P5	AV N	los rial
E1								
E2								
F3								

Simulations	Subty	ре	S	E1	E2	E3	
initial actions,	HR+H	ER2+MP+	0.35	0.71	0.35	0.35	
1 = HR + .	HR+H	ER2+MP-	0.47	0.8	0.47	0.47	
	HR+H	ER2-MP+	0.17	0.48	0.48	0.17	
2 = HER2 -	HR+H	ER2-MP-	0.25	0.59	0.59	0.25	
	HR-HE	ER2+MP+	0.55	0.55	0.55	0.55	
	HR-HER2+MP-		0.67	0.67	0.67	0.67	
Assumption	SHR-HE	HR-HER2-MP+		0.32	0.68	0.32	
	HR-HER2-MP-		0.43	0.43	0.77	0.43	
	True Signature			HR+	HER2-	None	
		-					
	Subty	Subtype		E1	E2	E3	
	HR+H	HR+HER2+MP+					
	HR+H	ER2+MP-					
Average	HR+H	ER2-MP+					
	HR+H	ER2-MP-					
sample	HR-HE	ER2+MP+					
sizo	HR-HE	ER2+MP-					
SIZE	HR-HE	ER2-MP+					
	HR-HE	ER2-MP-					
	Total						
Arm	P1	P2	P3	P4	P5	Av M	os ial
E1							
F2							
ES							

Conclusions

- Clinical trials can prospectively identify responding patient subpops
- False positives can be beaten down (requires potential for larger n)
- Drug companies will work together
- Not perfect, but we're getting better
- "A new day is dawning, Watson!"

Simulations

- For operating characteristics:
 - Type I error rate
 - Power (many variants)
 - Sample size distribution (mean)
- Requires completely prospective design (computationally intensive)
- Many scenarios
- Accrual rate matters
- # exp drugs over time matters

Experimental Drugs

- Sample size for each drug, 20 to 120 (minimum 60 if "success")
- Maximum of 5 exp drugs at a time
- Patient enters trial, identify subtype
- Find prob each drug >> control; based on all current results (Bayes)
- Covariate modeling (across subtypes)
- Assign in proportion to current prob
 - drug >> control, by subtype

Longitudinal Modeling (MRI volume is auxiliary endpoint for adaptive decision making)

 Assess predictability (depending on therapy) of pCR from interim MRI

 Borrow relationship (but discounting) from I-SPY1 Webbased eCRF Entry Screen Example

	Activity	Patients	Admin	Joyce Antwine	[Female 54y]	
				sults Observation		
Response E Disease Assessmer	Valuation Fo	r m Complete				
Reporting Per	fod		0.5			
Date of cl	inical assessment:	men (if applicable)	Pre-surge	ary		
Disease Asses	sment O'Clock po	sition Distanc	e from Long	est Diameter		
Target Lesion	From	To nipple	(cm) (LD) (cm)	Clip placed?	
1	09	02 4.10	am am	1.3cm	No	
-	0.	Matted nodes:	O No	O Yes		
	0.	Matted nodes:	O No	O Yes		
		Nodes fixed to che	est wall: 🔘 No	O Yes		
		Type of lymph nod	le involvement:	Axillary	Internal mamm	nary Supraclavicular Infraclavicular
		Circo of losses to a state	day .			
		Size of largest not	ie.	cm		
Patient clinic	ally staged during <u>t</u>	Size of largest not)No	Cm Ves:	TN	M (Do not include pre-study senti node results in estimating clinic stage at baseline)
Patient clinic If patient dia Skin o	ally staged during <u>th</u> gnosed with T4 at b only	his reporting period? aseline, indicate cur Chest wall	v No	cm Yes: umor: twall	T N	M (Do not include pre-study sent node results in estimating clini stage at baseline)
Patient clinic: If patient dia Skin o	ally staged during <u>t</u> gnosed with T4 at b only	Size of largest nor his reporting period? aseline, indicate cur Chest wall ast conservation sur	P No rrent status of T4 to skin and ch gery now? N	Cm Ves:	T N	M (Do not include pre-study senti node results in estimating clinic stage at baseline)
Patient clinic: If patient dia Skin o Is the patient	ally staged during <u>t</u> gnosed with T4 at b only	his reporting period' aseline, indicate cur Chest wall ast conservation sur	P No rrent status of T4 t skin and ch gery now? N reason:	Yes:	T N	M (Do not include pre-study senti node results in estimating clinic stage at baseline)
Patient clinic If patient dia Skin o Is the patient If the patient i	ally staged during <u>th</u> gnosed with T4 at bo only	his reporting period? aseline, indicate cur Chest wall ast conservation sur choose the principal Patient ch	P No rrent status of T4 t skin and ch gery now? N reason: pice / family histor	cm Yes:	T N	M (Do not include pre-study senti node results in estimating clinic stage at baseline)
Patient clinics	ally staged during the gnosed with T4 at booms of the the solution of the	his reporting period aseline, indicate cur Chest wall ast conservation sur choose the principal Patient ch Institution	P No rrent status of T4 t skin and ch gery now? N reason: pice / family histor al norm	vest wall	T N	M (Do not include pre-study sent node results in estimating clini stage at baseline)

Preparing for IRB Approval

The I-SPY 2 Protocol and Informed Consent Documents are highly complex

- Adaptive trial design
- Randomization process
- Multiple novel agents from multiple pharmaceutical companies
- Biomarkers screening
- Two-stage informed consent
- Convened a meeting of 45 stakeholders-IRB chairs and Pls